
15 Editing – navigation ____
(From Word 2007 onwards, the functionality of InstantFind is probably redundant because of the more advanced find

facilities now available. However, the FindFwd, FindBack, FindFwdCase and FindBackCase may still be very useful.

Also, if you crave being able to jump straight to the old-fashioned advanced F&R dialog, try the FindAdvanced

macro.)

When working with text, you want to be able to move around it, looking at various bits, checking them and changing

them, so in this section there are tools to allow you to jump instantly to another heading of the same type, to another

occurrence of the selected text, to another comment – plus a whole load of other ways of jumping around the text. I

find that using these speeds me up considerably.

(And the section above gave you tools to allow you to jump around among the highlighting.)

Navigation pane customization
I was asked if it was possible, in a macro, to set the width of the navigation pane. It is, but you can customize it in

various ways – see below.

Sub NavPaneWidth()

Open navigation pane your size and position
Word’s navigation pane can be placed in different positions and at different sizes. This macro switches the pane on

and off in the position/size you want.

To help you decide on a suitable size, you can change doSetUp = False into doSetUp = True, then open the

navigation pane at a size you like, then run the macro and it will tell you the current height and width of the pane. You

can then put whatever numbers you want in the macro, and change back to doSetUp = False.

When putting the pane in different places (here offered are left, right and floating – there are others), you can only

specify height of the floating version of the pane.

Sub NavPaneCustomize()

Temporary bookmarks
Before you start navigating around, it’s helpful to leave a temporary bookmark behind, so that you can quickly get

back to where you started. So there’s a macro to place a temporary bookmark at the cursor, and then one that jumps

you back to your temporary bookmark.

There’s also one to clear the temporary bookmark if you’re worried about sending off a file that has a stray bookmark

in it.

But there is also a macro that uses the temporary bookmark to make it easier to select a long section of text: Use

BookmarkTempAdd to place a marker at one end of the section, then go up or down through the text, by whatever

means, to find the other end. Place the cursor at the end and run BookmarkToCursorSelect to select from marker to

cursor.

Note that InstantFindUp, InstantFindDown and InstantFindDownWild also lay down a temporary marker before

dashing off to find what you’ve told them to find, but it’s a separate marker. So if you use BookmarkTempFind once,

it will find the usual temporary marker, but then if you use it a second time, without moving the cursor, it realises it’s

http://wordmacrotools.com/macros/N/NavPaneWidth
http://wordmacrotools.com/macros/N/NavPaneCustomize

already at the first marker and will jump you to the InstantFind marker instead – so you don’t need to learn a new

keystroke.

Sub BookmarkTempAdd()

Sub BookmarkTempFind()

Sub BookmarkTempClear()

Sub BookmarkToCursorSelect()

Instant find
“Super-Searching 1” (9:52) https://youtu.be/EJSB13x8QMU

(Word’s own search facilities, as a background to...)

“Super-Searching 2” (9:16) https://youtu.be/gTX6Z3uWp8k

WildcardLoader simple use

“Super-Searching 3” (6:19) https://youtu.be/o50lMd7LUtA

WildcardLoader advanced use

“Super-Searching 4” (7:49) https://youtu.be/m4gVuqrl83w

More about WildcardLoader

As an editor, you want to be able to move around the text looking for things, quickly and easily. For example, you’re

reading through the text, and you read:

‘Step 1: Put the cat out’

and you think to yourself, ‘Hang on, did the lists earlier in the text have a colon after the number or not – and were

they separated with a space or a tab?’ So, you want to be able to quickly look back – but how far back was it, and will

you be able to find it if you rely on scrolling back and scanning by eye?

Using the macros below, there’s a quick and easy way: (You can use whatever keystrokes you like, but for the sake of

the explanation, let’s assume you are using my keystroke suggestions.)

Click in the word ‘Step’ and press Ctrl-Shift-Alt-Up to run InstantFindUp. This loads ‘Step’ into the F&R, and jumps

up to the previous occurrence. (If you had done Ctrl-Shift-Alt-Down, it would have run InstantFindDown and jumped

on to the next occurrence.)

(By default, the macro assumes that you’re looking for the single word at the cursor, so if you want, say, to look for

‘Step 1’, then just select it before running the macro.)

Now that the F&R is loaded, Alt-Left (FindBack) and Alt-Right (FindFwd) will jump you to the previous and the next

occurrence of ‘Step’, so you can go up and down each ‘Step’ to your heart’s content.

But then you see that it’s finding ‘step’ as well as ‘Step’. Bother!

No worries! We can soon ‘control’ that. Pressing Ctrl-Alt-Left (and -Right), will jump you through case sensitively, so

that it will take you through the occurrences of ‘Step’, but ignore ‘step’. (Word’s own Ctrl-PageUp and Ctrl-Page-

Down also jump you from one occurrence to the next.)

New feature: If the word you’re looking for is, say, ‘jump’ and you don’t want it to find ‘jumped’, ‘jumps’ or

‘jumper’, then just add a wildcard ‘>’, and select ‘jump>’ and then when you run InstantFindDown(Up), and it will

see the angle bracket and switch to wildcard mode and only find ‘jump’ as a single word. OK, I admit that it’ll still

find ‘longjump’, but you could also add a ‘<’, so search for: ‘<jump>’. (But you could alternatively use the macro

FindDownWild, below.)

http://wordmacrotools.com/macros/B/BookmarkTempAdd
http://wordmacrotools.com/macros/B/BookmarkTempFind
http://wordmacrotools.com/macros/B/BookmarkTempClear
http://wordmacrotools.com/macros/B/BookmarkToCursorSelect
https://youtu.be/EJSB13x8QMU
https://youtu.be/gTX6Z3uWp8k
https://youtu.be/o50lMd7LUtA
https://youtu.be/m4gVuqrl83w

(There’s more to come, but just try these and get used to them before memorising more keystrokes.)

I also find it useful to instantly find the selected text by first jumping to the top of the document and then searching

downwards for it – that’s InstantFindTop.

Someone asked to do the opposite: first jump to the bottom of the document and then search upwards for it – that’s

InstantFindBottom.

New feature: When you go off searching for things, you can sometimes lose track of where you were in the document

when you decided to search for something. I’ve therefore made it so that you can use my bookmarking macros. So

when you run InstantFindDown(Up) it will leave behind a bookmark, so you can then get back to this starting point by

using BookmarkTempFind.

However, this annoys me if I search for something in one of the files I regularly access but may not actually have

edited, such as this file you’re reading now(!). If the macro adds a bookmark, then when I try to close the file, it will

ask if I want to save it. So I have to think, “Have I actually made any changes to this file or was I just searching for

something?” So, even if, at the top of the macro, you’ve set addBookmark = True, it will NOT add a bookmark if

the current file is one of these named files:

butNotTheseFiles = "zzSwitchList,ComputerTools4Eds,TheMacros,5_Library"

You can obviously add to, or subtract from, this list the filenames of the files you search regularly.

Sub InstantFindDown()

Sub InstantFindUp()

Sub InstantFindTop()

Sub InstantFindBottom()

Sub FindFwd()

Sub FindBack()

FindFwd will find the next occurrence of the search text in the main text or in the footnotes or in the endnotes or in the

comments. However, one editor wanted FindFwd to search to the end of the text and then, if nothing was found, jump

into the notes (if there are any, of either type) and from there into the comments.

I started using it, to replace FindFwd, but it didn’t suit the way I work – I like to hear the ‘bong’ to tell me that it has

reached the end of the text and can find anything, rather then jumping unannounced into the notes. So I’m sticking to

FindFwd – you have the option.

Sub FindFwdAll()

And I’ve realised that, for DocAlyse, it’s useful to be able to ‘find down’, but with wildcards switched on. This is so

that you can select, for example, ‘[a-zA-Z]@, [a-zA-Z]@, and’ in the DocAlyse summary to search through the text

for serial commas. So I’ve added another one:

Sub InstantFindDownWild()

Finally, being a totally nutty speed-freak, I decided it would be helpful to be able to jump up and down, from word to

(the same) word, but without losing the previous item that I was trying to find. So, say I was looking for the word

FRedit, I’d use InstantFindDown, (or Up) and then FindFwd and FindBack; but then FRedit is mentioned a lot in this

book (currently over 300 times!). So then if I decided it was near the earlier reference to ‘speed-freak’, I could select

that term and use InstantJumpUp to move to it, without losing ‘FRedit’ from the Find function.

Sub InstantJumpUp()

Sub InstantJumpDown()

http://wordmacrotools.com/macros/I/InstantFindDown
http://wordmacrotools.com/macros/I/InstantFindUp
http://wordmacrotools.com/macros/I/InstantFindTop
http://wordmacrotools.com/macros/I/InstantFindBottom
http://wordmacrotools.com/macros/F/FindFwd
http://wordmacrotools.com/macros/F/FindBack
http://wordmacrotools.com/macros/F/FindFwdAll
http://wordmacrotools.com/macros/I/InstantFindDownWild
http://wordmacrotools.com/macros/I/InstantJumpUp
http://wordmacrotools.com/macros/I/InstantJumpDown

Instant find – case sensitive
The next pair of macros (referred to above) improve on Word’s jumping to the next and previous find. By holding the

Ctrl key down – i.e. Ctrl-Alt-Right and Ctrl-Alt-Left (assuming you use the same shortcuts as I do) – it only finds

matches that are exactly the same case as the Find text.

Sub FindFwdCase()

Sub FindBackCase()

Instant replace
Working along the same lines as the macros above, once you’ve got used to skipping around the text with Find, why

not speed up the replacing too?

There are two macros designed for this. The first (which I put on Ctrl-Alt-Shift-Right, in line with Alt-Right being a

forward Find) simulates the Replace action of the normal F&R dialogue box (which you still have to set up in F&R

dialogue box as normal†). So you click Alt-Right to take you through until you find an occurrence that does need

replacing, and then click Ctrl-Alt-Shift-Right to change it, and jump to the next occurrence.

But what’s the point?! With the normal F&R dialogue box, pressing the F key finds the next, and pressing the R key

replaces that occurrence and finds the next, so what do you gain?

First of all you gain from the fact that you are ‘in the text’, i.e. while you are doing this selective F&R, you can easily

stop along the way and change something else that catches your eye without going in and out of the F&R dialogue

box. But the second reason makes learning a new keystroke much more worthwhile.

The second of the two macros below does the replace, but it does not move you on to the next occurrence. This means

that you can stick around and see exactly what effect the Replace has had – i.e. you can double-check that you have

set up the F&R properly – especially useful if the F&R is a wildcard one. After all, the next occurrence is only an Alt-

Right click away.

(†N.B. To set up the Find and the Replace, you could use PrepareToReplaceDown. That’s fine, but if you do it

‘manually’, then after you’ve typed in the Find text and the Replace text, you must then click ‘Find Next’, otherwise

the F&R box ‘forgets’ the text you’ve just typed in. Grr!)

Sub FindReplaceGo()

Sub FindReplaceStay()

Instant find clipboard
And another macro that’s useful is where you’ve copied (<Ctrl-C>) a word or phrase in one document and want to

find it in another. This macro simply looks down through the current document and jumps straight to the first

occurrence it can find of whatever is stored in the clipboard.

Sub FindClip()

If I’m constantly flipping back and forth, say to find references in a list in a separate file, I find it useful also to have a

version that jumps to the top of the file first, and then looks for the contents of the clipboard – i.e. it’s the same macro

as the one above, but with the addition of the first line:

Sub FindClipTop()

http://wordmacrotools.com/macros/F/FindFwdCase
http://wordmacrotools.com/macros/F/FindBackCase
http://wordmacrotools.com/macros/F/FindReplaceGo
http://wordmacrotools.com/macros/F/FindReplaceStay
http://wordmacrotools.com/macros/F/FindClip
http://wordmacrotools.com/macros/F/FindClipTop

Clear odd find conditions
If you’re using a range of different (perhaps clever) find formats, you sometimes find that a simple find, or

FindFwd/Back won’t find things that you *know* are there! This may be because some parameter has been set in the

Find function. This macro therefore ‘cleans down’ all the ‘funny’ Find parameters.

Sub FindResetParameters()

Instant find particular formats
(N.B. This is very similar in functionality to FindStyle (below), which I created after these macros, but forgetting that

they were available! And, I prefer the way that FindStyle functions.)

If you’ve discovered the huge speed-up value of the InstantFind macros, then you might also like InstantFindFormat.

The idea started when I noticed in a book that I was reading that the note numbers (which are not electronically linked

notes, but simple subscripted numbers) weren’t sequential, so I wanted to be able to jump from one superscripted

number to the next (and back again).

What InstantFindFormat does is (a) if some text is selected that has an attribute (so far just super/subscript, italic or

bold), it will look for that exact text, but only when it occurs with that attribute. So, if you select a superscript ‘4’, it

will only find any other superscript ‘4’ in the document. However, if nothing is selected, but the character to the right

of the cursor is, say, a superscript ‘4’, then it will jump to the next (or previous) character – any character – that is

superscripted. So that will jump me back and forth between all the superscripted numbers.

Or you might use it to jump between all the different items of bold text, or italic text, or perhaps all the subscripts (say

if you want to check whether the subscripts are italic or not).

As with the normal InstantFind, you use this macro to set up the F&R (either up or down), and then you can use the

normal FindFwd and FindBack to jump up and down through the various finds.

Sub InstantFindFormatDown()

Sub InstantFindFormatUp()

Find in another file
(Video: youtu.be/BueNLL8uyKE and youtu.be/PB0hXA_1tRo and https://youtu.be/EaFJuKTbhGw and the

most recent: https://youtu.be/sNUwH1ECFjU)

If you are working on two similar files, it can be very useful to be able to move from somewhere in the first file over

to the equivalent place in the second file. For me, the main application is where someone has added some (hopefully

tracked!) changes to one version of a file, and I want to update my master version of the file.

So if you select a bit of the text and run the macro, it will then look through the other file (in fact, it looks at all the

other files currently open in Word) until it finds the exact same piece of text. And there you are, at the same place in

the other file – almost instantaneously.

However, if that bit of text has been changed, even slightly, then obviously it won’t find it, so the macro just beeps at

you and returns you to the first file, so that you can select a more suitable bit of text.

But you don’t actually have to select some text; you can also just put the cursor, say, in the middle of the line above

the one you’re interested in comparing (because the target line has probably been changed in some way). Then,

because no text is selected, the macro knows to use a different search technique: It selects the whole of the line and

searches for that text in the other open file(s). This time, if it can’t find it, it progressively shaves bits off the ends of

the search text until it eventually finds something that matches (or maybe not). (See note † below.)

However, it occurred to me that if, say, you’ve got a list of names or a references list, and all you want to do is search

the other file for an individual word or name, it might be quicker to be able to put the cursor in that word, and not

select it, and the macro would know to search just for that word, and not the whole line, as mentioned above. So if you

want: “no text selected” to mean “just look for a word” then, at the start of the macro, set:

http://wordmacrotools.com/macros/F/FindResetParameters
http://wordmacrotools.com/macros/I/InstantFindFormatDown
http://wordmacrotools.com/macros/I/InstantFindFormatUp
https://youtu.be/BueNLL8uyKE
https://youtu.be/PB0hXA_1tRo
https://youtu.be/EaFJuKTbhGw
https://youtu.be/sNUwH1ECFjU

selectCurrentWord = True

but if you want: “no text selected” to mean “look for the whole line”, then, at the start of the macro, set:

selectCurrentWord = False

Another selection feature now available is if you set, at the start of the macro:

wholeWordsSelect = True

then if you select some text, it will round off the beginning and end of the selection to the nearest whole word.

Application idea: Suppose you’re working on, say, four different files that you want to compare – say A, B, C and D

– then FindSamePlace, will search in the order A, B, C, D. However, if you use FindSamePlaceBack, it will search in

the reverse order: D, C, B, A. So, if you are in file C then FindSamePlace will search in the order D −> A −> B,

whereas FindSamePlaceBack will search in the order B −> A −> D.

(N.B. The order that these macros use when searching a set of more than two files is alphabetic on filename.)

†In case it helps your use of the macro, I’ll explain how it decides which bits to chop off. If the cursor is nearer to one

end of the line than the other, it takes 10 characters (the number set by myStep, at the beginning of the macro) off the

long end and tries again. When that end is shorter than the other, it takes some off the other end, so if it still can’t find

this shorter text, it gets nearer and nearer to the words around the place where you put the cursor, eventually giving up

when there are less than minLength characters.

(Recent upgrade feature: If you have a file open that has been created by MultiFileText or MultiFileWord then if you

click in a line and run this macro, it loads up the relevant original file and then finds the same line, so that you can

look at the context.)

(Another recent upgrade feature: If you have to work with lots of files open at once, but you don’t want the macro to

go all the way round through all the files, there are two ‘exceptions’ methods, to make these macros ignore one or

more of the files.

notThisFile = "zzSwitchList"

notThisFileEnd = "XX"

You can probably guess the idea for the first one. I always have my switch list file open, so I want this macro to ignore

it. But if you made that line notThisFile = "zz", then it would skip past any file with ‘zz’ in its name.

The second one works by typing ‘XX’ right at the end of the files you don’t want it to search.)

(Yet another recent upgrade feature: If you have to work with lots of files open at once, but you ONLY want the

macro search in certain files that have a common element in their filenames, say ‘_PB’, then here’s the line to change:

onlyLookInTheseFiles = ""

So change it to:

onlyLookInTheseFiles = "_PB"

and it will only searching in files such as ‘Chap_01_PB’, ‘Chap_02_PB’, ‘Chap_03_PB’, etc.

But don’t for get to change it back to:

onlyLookInTheseFiles = ""

when you’ve finished, otherwise it won’t find anything, if you don’t have any ‘_PB’ files!)

Sub FindSamePlace()

Sub FindSamePlaceBack()

Find in context
(Video: youtu.be/P-6VdmT2BbE)

(Now superseded by MultiSearch, below.)

If you’re trying to quickly find a particular passage within a long text (such as this book), you ideally need some

unique word. So if you wanted to find the macro mentioned above, it would be easy if you knew that it was called

‘FindSamePlace’. But what if you didn’t know the exact name?

This macro allows you to find up to three separate words (well, bits of text) that are near to each other. You specify

the main word you’re looking for, and then one or two other words that should be somewhere nearby, and you can

also specify the range (in terms of the number of words) over which you want it to look. In this case, as the previous

macro is about searching for text in another file, we might try:

mainWord = "search"

nearWord1 = "other"

nearWord2 = "file"

distance = 40

The macro then searches the text (downwards from the current cursor position) until it finds the main word, ‘search’

(there are over a hundred of those in this book) and then looks to see whether both ‘other’ and ‘file’ occur within 40

words either side of ‘search’.

Another example would be if you were looking for a reference ‘John Smith’ but you weren’t sure if he appeared as

‘Smith, John’ or ‘John Smith’, ‘John Arthur Smith’ ‘Smith, J’ or ‘J Smith’. If so, you could use, say:

main = "Smith"

nearWord1 = "J"

nearWord2 = ""

distance = 3

(As you can see from this example, if you only want to link two words, not three, then just make one of the words

"".)

N.B. Case sensitivity: If the word you specify is all lowercase then the macro searches case insensitively, but if it has

at least one uppercase letter (e.g. ‘Smith’), then it will search case-sensitively.

So if you look for:

mainWord = "Smith"

nearWord1 = "j"

nearWord2 = ""

it would also find ‘Benjamin Smith’. Then...

mainWord = "smith"

nearWord1 = "j"

nearWord2 = ""

would find both ‘John was a smith’ or ‘A smith joins bits of metal’, but...

mainWord = "smith"

nearWord1 = "J"

nearWord2 = ""

would only find the first of those two examples.

http://wordmacrotools.com/macros/F/FindSamePlace
http://wordmacrotools.com/macros/F/FindSamePlaceBack
https://youtu.be/P-6VdmT2BbE

And here’s another idea:

mainWord = "Jones"

nearWord1 = "199"

nearWord2 = ""

distance = 4

This would find various combinations of Harvard-type citations with or without commas, brackets, et als etc from any

year in the 1990s.

Setup: As you’ll have realised, it would be a real pain if you had to keep going into Visual Basic to edit the macro

every time you wanted to set up a new search. I have therefore used the same setup as for SpellAlyse, where if a Word

file, called ‘zzSwitchList’ (or whatever you prefer), is open, it will look in there for, say,

mainWord = "Jones"

nearWord1 = "199"

nearWord2 = ""

distance = 4

These parameters will then will be used instead of the ones set within the macro itself.

I suggest that you copy and paste the four lines out of the macro and into your ‘zzSwitchList’ file, so that you get the

exact spacing and (straight) quotation marks.

It doesn’t matter what else is in the ‘zzSwitchList’ file. Indeed, as you might have guessed from the name, this is the

file that I use for the word lists for MultiSwitch (and also WordSwitch and CharacterSwitch) – so I have that one file

open the whole time I’m using Word. And it also holds my SpellAlyse parameters.

Sub FindInProximity()

To make this macro more flexible, I’ve written a macro whereby you can select some text (the obvious text is a

reference or citation) and this new macro will take the first and last words of your selection as the mainWord and

nearWord1 for FindInProximity then to search for. So if you have “Jo Bloggs and his colleagues in 1996 showed ...”

and if the highlighting I’ve used here represents the area selected, then this macro sets up for you:

mainWord = "Bloggs"

nearWord1 = "1996"

nearWord2 = ""

distance = 12

And you can search it. The distance of “12” is set at the beginning of the new macro, but it is also offered to you when

you run the macro: press Enter to accept this value, or type in a different value. If you want to search Bloggs in the

1990s, you can just select: “Jo Bloggs and his colleagues in 1996 showed ...”, i.e. don’t include the ‘6’.

If you’re having to search a lot of these, the other speed-up on offer is, at the start of the macro:

assumeWholeWords = False

If you change that to True, then you can quickly just select: “Jo Bloggs and his colleagues in 1996 showed ...”,

i.e. anywhere in ‘Bloggs’ and anywhere in ‘1996’, and it will set up for Bloggs 1996.

Finally, getting away from references, if you need to search for anything with FindInProximity – say you want

something about a macro that deals with comments – just type “macro comment” and select it and run this macro.

Sub FindInContextLoad()

http://wordmacrotools.com/macros/F/FindInProximity
http://wordmacrotools.com/macros/F/FindInContextLoad

Find combinations of texts
N.B. To use this macro, you need to copy the following single line to the very top of the VBA area:
Private pbMultiSearch As String

(Video: https://youtu.be/wE8LyF44PZI)

The aim of this macro is to provide a flexible way of finding things, especially in longer documents. The idea is that

you specify a search such as:

 highlight+track+macro

i.e. you might use this to search this present document for a macro that highlights every tracked change.

What the macro would do is work out which word (or phrase) occurs least often. Then it would find the first

occurrence of that word downwards (or upwards for the complementary macro) and then check to see whether the

other words/phrases also occur within a specified number of words before or after it.

(This number of words is set at beginning of the macro: myRange = 12)

Or maybe you might look for:

 smith+2014

This would obviously find an author-date citation, ‘Smith, 2014’ but it would also find ‘In 2014, Fred Jones, Simon

Green and Burt Smith wrote...’

So that’s the AND function of this macro: you’re looking for ‘Smith’ AND ‘2014’, but the macro also has an OR

function. For example:

 red wine+german_french

This would look for ‘red wine’ with either ‘(F)rench’ or ‘(G)erman’ nearby. (The search is not case sensitive, but it

can check capitals: see below.)

To operate the macro, you can type out your search criterion on a separate line, as above (but see below for an easier

way of loading of the search). Then if the cursor is in the line containing the search criterion, and you can run either

the up or the down search macro and it will recognise the ‘+’ sign and load up the search. You are then ready to move

the cursor to the area or document you want to search and run the macro again, to do the actual search.

N.B. To search the text of the footnotes or endnotes in a document, just click in one of the notes.

When the macro finds its target it selects the area of text containing the required search items (or beeps if it can’t find

a suitable match).

To move to the next (or previous) occurrence of these texts, simply run the macro again (or run its complement).

(Practical point: if the document contains linked URLs or links to other parts of the document, it might be that nothing

is visibly selected. To find the text it that has located, hold down <Shift> and click <right> a few times to extend the

selection, which should then become visible. N.B. the macro can get very confused by tables of contents, and may

keep returning to the same place! In which case, move past the end of the table and try again.)

(Practical point II: It’s possible that the macro might baulk at text within a table [it won’t search any text in textboxes,

sorry]. If so, please send me a sample text [and search criterion], and I’ll see if I can solve the problem.)

Checking capitals: The macro now has a form of optional case sensitivity. If you add an underline character at the very

end of the search criterion, it will search case insensitively, but then will check that all of the individual uppercase

characters in the criterion are echoed in the current find. For example:

http://wordmacrotools.com/macros/h/https:/youtu.be/wE8LyF44PZI

 Smith+2014_

will not find, “John has worked as a wordsmith since 2014”.

A quicker way to build up your search criterion is to use the MultiSearchLoader macro. Select a phrase, or just click in

the word you want to search, and the macro loads this text into the search criterion. If there is already some text in the

criterion, it offers to combine this new text in a variety of ways:

So here it shows that we already have a criterion set up: ‘highlight+track’.

Either edit this text or just type in a new search criterion you want, or you have other five options, each set by pressing

a single key, then Enter:

RESTART: This ignores the current criterion and starts with the word at the cursor (or the currently selected text).

AND: This adds a ‘+’ (AND) to the current criterion followed by the current text.

OR: This adds an underline ‘_’ (OR) to the current criterion followed by the current text.

Check Caps: This adds an underline character at the end of the criterion (or removes it if there already is one).

EDIT: This copies the text of the criterion into a suitable file where you can edit it yourself and then reload it.

If you have a switch list open (as used by MultiSwitch), the EDIT function can use that. If not, it will look for an open

file that looks as if it has already been used to edit a criterion. If not, it opens a brand new document.

You can use whichever keys you like for each of the functions. Indeed, you can have alternative keys set up; these are

displayed for you in the input window, e.g. as supplied, the AND function can be executed by typing either ‘2’ or ‘+’

and pressing Enter.

Here are the lines that created the above choice of keys for running this macro:

restartKeys = "1."

ANDkeys = "2+"

ORkeys = "3-/"

capsKeys = "6*"

editKeys = "0"

If you don’t have a numeric keypad, you might choose to use keys close to the main Enter key – your choice, entirely.

Sub MultiSearchLoader()

Sub MultiSearch()

Sub MultiSearchUp()

http://wordmacrotools.com/macros/M/MultiSearchLoader
http://wordmacrotools.com/macros/M/MultiSearch
http://wordmacrotools.com/macros/M/MultiSearchUp

Find any of a set of searches
N.B. This macro is based on (yet another!) idea by Howard Silcock – Thanks, Howard!

(This is a 2014 macro and is probably now redundant in light of the macros above.)

This macro searches for <this text> OR <that phrase> OR <the other bit of text> – whichever comes next, starting

from the current cursor position.

You have two macros, the first of which is used to set up the search, so you would run it and enter:

this text,that phrase,the other bit of text

or if you happen to want to search for a comma, you can enter:

this text|that, phrase|the other bit of text

The setup macro stores these search criteria in a variable in the file. Then each time you run the main searching macro,

it reads this variable and executes the search, so you can use it over and over again without retyping.

For example, maybe you would want to look through some text to find when and where various people have been

mentioned, so you might enter: Jones,Green,Smythe

The macro then looks for each of these three names as they occur.

Unfortunately, it will also find ‘wintergreen’, ‘greenwood’ etc. No problem, just use: Jones,$Green,Smythe. In

other words, the $ says that this word should be searched case-sensitively.

But then it would still find ‘Greengrass’, so you decide you want to use a wildcard search. For that, you would use,

say, Jones,~<Green>,Smythe. In other words, the tilde “~” (familiar to FRedit users) indicates that the

following search pattern is to be wildcarded.

Or you might use: Jones|~<Green>|~Sm[iythe]{3,4} which will find Smith, Smyth, Smythe (and even

Smtyh!), but note that, I’ve used ‘|’ and not comma as a separator because the wildcard search is Sm[iythe]{3,4},

which itself contains a comma!

I’m sure you’ll think of ways you can use this tool, but I can see one immediate use of the case sensitive function –

searching for a commonly occurring word where it’s the exceptions that you want to find. So, for example, you could

ignore ‘the’ by searching for: $The,$THE or maybe even use wildcard for it: ~The>,~THE> (remember that

wildcard searches are always case sensitive).

N.B. Because each macro calls the other macro, it is important not to change the names of these macros. Well, if you

do, you’ll also have to edit the place in the other macro so that it calls the macro by your new name. For example,

instead of Call FindThisOrThat you’d change it to Call MyNewName.

Sub FindThisOrThat()

Sub FindThisOrThatSetUp()

Copy text into the F&R box
Here’s the scenario: You’re working on a document and find, say, ‘Bloggs & Sons Ltd’, and you decide to use F&R to

change it to something slightly different, say ‘Bloggs & Sons plc’.

To do this manually, you have to select the text, open the F&R window, paste the text into both Find and Replace, and

make the necessary changes to the Replace version. However, with this macro, you simply select the text, press Ctrl-

http://wordmacrotools.com/macros/F/FindThisOrThat
http://wordmacrotools.com/macros/F/FindThisOrThatSetUp

Alt-H (or whatever key you want to assign to it) and up pops the F&R window with the text already in both Find and

Replace.

Sub PrepareToReplaceDown()

I also have a version that switches the track changes off as I start it up:

Sub PrepareToReplaceDownTCoff()

As it stands, this macro trims the final space off the selection. This is useful if you select a single word by double-

clicking it, because you may not want the trailing space. However, if you prefer it to transfer exactly what you select

into Find and Replace, then at the beginning of the macro, just use myText$ = Selection instead of myText$ =

Trim(Selection).

You might want to allocate that macro to, say, Ctrl-Alt-H (cf. Ctrl-H for normal F&R) and then have another version

(PrepareToReplaceFromTop) set to Ctrl-Alt-shift-H which picks up the selected text but, instead of starting the search

from just after the selected text, it starts from the top.

Sub PrepareToReplaceFromTop()

Then if, like me, you want to leave a place-marker behind (I use ‘[[[’), the next macro leaves a marker and then goes

to the top and does the F&R from there. Then you can jump back to your marker using the FindMyMarker macro.

Sub PrepareToReplaceWithMarker()

Find within deleted text
Someone said they wanted to “search through the track changes”. What they meant was that they wanted to search

through for text that they had deleted (but track changed).

This macro searches through deleted text within track changes, starting from the current cursor position.

It’s just a proof of concept really, i.e. it’s only a case-insensitive search at the moment, but I can refine it you’re

interested.

Sub FindInDeletedText()

Multi-purpose find
(Video: youtu.be/Jm3xUnpYcSo)

The idea of this macro is that one keystroke, Alt-F (or whatever you choose), allows you to find a range of different

things. It does this in a number of ways, but many of them are done by setting up a wildcard find. Once that’s set up,

you can use

– Type in a word or phrase and it uses the normal F&R to find it

– p17 searches for page 17.

– f17 (or n17) searches for footnote 17.

– e17 searches for endnote 17.

– c17 searches for comment 17.

If, when you press Alt-F, some text is selected it will display that text in the input box and, if you just press Enter, it

will go and find it, but you can, of course, edit the text before pressing Enter, and also:

– a searches for acronyms: BBC, TTFN etc (see also ‘x’).

– B searches for BC/AD/CE/BCE.

– b searches for BC/AD/CE/BCE in small caps.

– d searches for dates of the form 13 Jan 2030.

http://wordmacrotools.com/macros/P/PrepareToReplaceDown
http://wordmacrotools.com/macros/P/PrepareToReplaceDownTCoff
http://wordmacrotools.com/macros/P/PrepareToReplaceFromTop
http://wordmacrotools.com/macros/P/PrepareToReplaceWithMarker
http://wordmacrotools.com/macros/F/FindInDeletedText
https://youtu.be/Jm3xUnpYcSo

– D searches for Dates of the form 13.6.09 or 1.6.2010

– e gets the existing text from Word’s Find box, so that you can change it in some way.

– E see under ‘z’ for zipcode.

– f searches by the font attribute(s) that have been applied to the text, e.g. superscript, bold, font size.

– h tries to work out which is the next heading, i.e., if it’s not Normal style, it searches by style; otherwise, it tries to

go by whether it’s italic and/or bold and the font’s size, name and colour, but if that’s no good, it looks for a code

symbol such as ‘<A>’.

– i searches for people with initials and surname, including full points (periods), e.g. J.L.B. Matekoni.

– I searches for people with initials and surname, without full points (periods), e.g. JLB Matekoni.

– m searches for email addresses.

– n searches for any number

– p searches for UK postcodes.

– s searches for section numbers, i.e. lines beginning with 2.3 or 14.9.1.1.

– u searches for units: mA, kg, cm, MN etc.

– w searches for web addresses.

– x expands an acronym, i.e. searches for words that might be the expansion of the acronym.

– X expands an acronym, but looks for uppercase or lowercase. However, for acronyms longer than three characters it

only searches the first three, otherwise Word complains that the wildcard F&R is too complicated!

– y searches for years, e.g. 1066, 1948 or 2030.

– z searches for US zip codes (five-digit numbers).

– Z searches for Canadian zip (postal) codes (e.g. V9M 3T7).

– E searches for European postal codes of the form N-1234, or E 34568.

– numbers 1 to 5 find headings (paragraphs) that start with the same 1 to 5 characters, e.g.:

(a) If the line is “<A>Figure 2.3 Blah blah” then using 2 will find all <A> headings, while 1 finds any <A, <B, <Fig

etc.

(b) If the line is “Figure 2.3 Blah blah” then using, say, 4 will find all headings (paragraphs) starting “Figu...”, but will

ignore cases where, say, “However, in Figure 3.2 we can see...”

– (searches for (3.16), (12.2), e.g. equation numbers – and even ‘(2.4.1.7)’

– ‘-’ (a hyphen) searches for a word pair with or without spaces and/or hyphen/en dash. If you select ‘borehole’ or

‘bore hole’ or ‘bore-hole’ or ‘bore–hole’, it will find any/all of those combinations throughout the text.

However, as with HyphenSpaceWordCount, you don’t actually need to select any text; just put the cursor in the first

word, and it will beep at you and ask you to confirm, “First word? bore” – just press Enter.

But then if you click in ‘borehole’, it will say, “First word? borehole”, so you just delete ‘hole’ (in the input box) and

press Enter.

– Custom searches – there’s a section in the macro where I set up two-letter codes for words I often need to search for

so, for example, if I type ‘se’ and press Return, it searches for ‘| Spelling Errors’ (which you’ll recognise, if you use

SpellingErrorLister and SpellingErrorHighlighter). Look in the middle of the macro, and you’ll see:

If Len(myText) = 2 Then

 myCase = True

 Select Case myText

 Case "re": myText = "References^p": myCase = False

 Case "fi": myText = "Figure"

 Case "se": myText = "| Spelling Errors"

 Case "mm": myText = "Macro Menu"

 Case "ap": myText = "Appendix"

 End Select

End If

I’m sure you can add and subtract your own special searches. Note that I search for ‘references’ in any case, but the

rest are searched case sensitively.

You can also use Word’s own special find features:

– A searches for All word forms, e.g. if it’s got ‘go’ it will find ‘going’, ‘gone’, ‘went’.

– W searches with the ‘Whole words’ feature enabled, so ‘the’ does not find ‘other’ or ‘thesis’.

– S searches with the ‘Sounds like’ feature enabled.

Note: When you are searching for some text, the macro searches downwards as you would expect. However, if it

cannot find the searched-for text before the end of the file, it does not then jump to the top of the text and start

searching from there. Instead, in beeps at you and then searches upwards from the current cursor position. I thought

this was more useful, but do ask me for an up-and-over-the-top version if you prefer. In any case, if you hear a beep,

but the cursor stays where it is then that text ain’t nowhere in the file. What’s more, before doing the search, the macro

switches off all the special features: wildcards, match case, sounds like and whole words, so if it’s there, it’ll find it.

The macro also loads the text into the Find box of Word’s F&R, so if you then want to jump around the file looking at

the various occurrences then, you can use the InstantFind macros above, as usual.

Where was I?

If you are doing any of searches above and you add a ‘[’ at the end of the line then, before the macro goes off to

wherever you want it to go, it leaves behind a ‘[[[’ as a marker so that you can then use the ‘[’ option to quickly and

easily get back to where you started. (Or, if you find it easier, you can use FindMyMarker macro – a single keystroke

to refind the ‘[[[’.)

Make up your own F&R

One of the powers of this macro is that, for a specific job, you can add your own specific wildcard F&R. For example,

someone wanted “a macro to change the note numbers in a list of endnotes from a full point (period) following by a

space into no full point (period) and a tab”. So, if you use SmartFinder and press ‘.’, the Find and Replace boxes will

be set up accordingly, and then you can use FindReplaceGo and/or FindReplaceStay to go through the notes one by

one (or on autorepeat!) changing them all. (Or just use Ctrl-H once the wildcard F&R is set up.)

I think the format is reasonably straightforward:

 Case ".": myFind = "^13([0-9]{1,2}). ": myReplace = "^p\1^t"

 ' Full point (period) off note number

Clearing up

After you have used some of the features such as the All word forms feature, other F&Rs may get a bit confused. So if

you use the Customize Keyboard window to assign, say on Ctrl-Alt-F to the FindOptionsDialog command you can

clear down all these special features to give yourself a ‘clean’ F&R (or use the FindAdvanced macro below).

Sub SmartFinder()

Old-fashioned find for Word 2007/2010
Some users of Word 2007, 2010 and 2011 are saying that they just want to be able to do the equivalent of what they

used to do in Word 2003 and earlier, before Word got ‘more clever’. That is, you want to call up what they now call

the ‘advanced’ Find and Replace dialog.

Fortunately, for compatibility reasons, all the old-fashioned dialogs are still available if you know how to find them.

Here’s one way, using a macro. (You can delete the MatchCase line if you don’t want that.)

Sub FindAdvanced1()

In fact, without the match case facility, you can reduce it to:

Sub FindAdvanced2()

And if you want the Find and Replace dialogue box, you can use:

Sub FindReplaceAdvanced()

And then I’ve now discovered that if you call up the Customize Keyboard dialogue box, click in the LH box on All

Commands, and then in the RH box find EditFind, you can allocate that to a keystroke – say Alt-F – and you don’t

even need a macro! (Or EditReplace for the full F&R function.)

http://wordmacrotools.com/macros/S/SmartFinder
http://wordmacrotools.com/macros/F/FindAdvanced1
http://wordmacrotools.com/macros/F/FindAdvanced2
http://wordmacrotools.com/macros/F/FindReplaceAdvanced

And now I’ve found a command FindOptionsDialog (set a keystroke using the method of the previous paragraph)

which brings up a window with just the various options you might want when searching.

I use a version that clears down all the ‘funny’ F&R options.

Sub FindAdvanced3()

Versatile searching via wildcards
“Super-Searching 1” (9:52) https://youtu.be/EJSB13x8QMU

(Words own search facilities, as a background to...)

“Super-Searching 2” (9:16) https://youtu.be/gTX6Z3uWp8k

WildcardLoader simple use

“Super-Searching 3” (6:19) https://youtu.be/o50lMd7LUtA

WildcardLoader advanced use

“Super-Searching 4” (7:49) https://youtu.be/m4gVuqrl83w

More about WildcardLoader

Please don’t worry! You don’t need to learn wildcarding yourself – just use wildcard searches that other people have

worked out. You can get some of them from the Resources tab on wordmacrotools.com.

WildcardLoader is a versatile macro with a number of features, but even if you use the first and most obvious facility,

it will enable to you do more versatile and effective searching.

If you have a file with some wildcard searches in it, simply put the cursor in one of them, and WildcardLoader will

load the search criterion into Word’s Find box and search for the first occurrence in that file. But then click in your

target file and use FindFwd or FindBack to look through all the occurrences that the wildcard finds for you.

Find two words in proximity (i.e. in the same paragraph): If you have the two words you want to find, e.g.

‘According to Smith et al (2016)...’ then you simply click in ‘Smith’ and then Shift-click in ‘2016’, run the macro and

it will take you straight to the next ‘Smith et al (2016)’ citation, or to the reference: Smith, P.Q., Jones T.A. & Benson,

Z. (2016) How to blah, blah, etc.’ (Note, to set up the search, the words don’t have to be in the same paragraph – just

click and shift-click any two words anywhere.)

The WC it generates (in case you are interested) is: [sS]mith[!^13]@2016. Because wildcard finds are case sensitive, it

is offering to find the text with or without an initial capital. The [!^13]@] in the middle just means, ‘any text that is

not a new paragraph, i.e. find the two words only if they occur in the same paragraph.

In the demo video, I search within the ‘Alice in Wonderland’ book for Alice and rabbit: [aA]lice[!^13]@[rR]abbit, so

whether it’s ‘the rabbit’ or ‘the White Rabbit’, it will still find it.

However, note that it only finds ‘[aA]lice’ followed by ‘[rR]abbit’ in a given paragraph. But then you can tell the

macro to switch it round for you: double-click any short word (or just select a couple of characters), run the macro,

and it will know that you want it to do the switch to: [rR]abbit[!^13]@[aA]lice.

If you want to see what the current WC search is, just click in any blank paragraph, run the macro, and it will type out

the search for you, like this:

[A-Z]{2,}

The final feature is, if you click in the middle of a paragraph that is not a WC search, it will respond by opening up an

input box into which you can type or paste some text to be searched (it also picks up the words near your cursor, in

case you want to use them).

http://wordmacrotools.com/macros/F/FindAdvanced3
https://youtu.be/EJSB13x8QMU
https://youtu.be/gTX6Z3uWp8k
https://youtu.be/o50lMd7LUtA
https://youtu.be/m4gVuqrl83w
https://www.wordmacrotools.com/

The list of WC finds on the website starts as follow, but this macro, like FRedit and MultiSwitch, is a ‘content-free’

macro, i.e. you can give it any text you want.

acronym

[A-Z]{2,}

e.g. BBC

BC/AD/CE/BCE in caps

[ABC][DCE]{1,2}>

e.g BC/AD/CE/BCE in caps

BC/AD/CE/BCE in small caps

[abc][dce]{1,2}>

e.g. BC/AD/CE/BCE in small caps

[0-9]{1,2}^32[A-S][a-z]@^32[0-9]{2,4}

dates, e.g. 22 Sept 1948, 7 Nov 88

[0-9]{1,2}.[0-9]{1,2}.[0-9]{2,4}

dates, e.g. 22.09.48 or 22.09.1948

The fonts, colours and highlights are totally irrelevant! They are only there to help me quickly locate the particular

WC I want – and, of course, at any stage, I can move the WCs around in the file.

What I have done, however, is to put an example of the target text on the line immediately following the WC. So when

I run the macro, it will select the first example it can find, i.e. on the next line. This encourages me that it is actually

working.

Enjoy!

And if you want to save a wildcard find that you’ve just tried out, you can type it out with WildcardType, ready to put

it in with your list of other wildcard finds. Place the cursor on a blank line and run the macro.

Another idea is that, for a given file you’re working on, say a whole book, you want to save some wildcard finds just

for that book. So if you use WildcardLoader to, say, do a search for ‘Brown’ and ‘2016’, and you think you might

want it again, or perhaps for a different year, run WildcardSave, and it will go to the top of the document, place a copy

of the find there, show it to you and then, when you click ‘OK’, it will take you back to where you were in the text.

Sub WildcardLoader()

Sub WildcardType()

Sub WildcardSave()

Find highlighted text
Each time you run this macro (HighlightFindDown), it looks for the next piece of text that is highlighted.

However, if you want to only find text in a particular highlight colour then select a bit of text in that colour and run

the macro from there.

http://wordmacrotools.com/macros/W/WildcardLoader
http://wordmacrotools.com/macros/W/WildcardType
http://wordmacrotools.com/macros/W/WildcardSave

And then the following macro (HighlightFindUp) does the same thing but upwards. So, if you are going down through

the document looking at highlights using the first macro, and want to go back up and look at the previous, bit of

highlighted text, run this macro instead.

You could, for example, assign the first macro above to Alt-PageDown and following one to Alt-PageUp.

Searching for any highlighted text is much quicker, so please be patient if you’re looking for a specific colour on long

documents. Indeed, if it’s taking to long, the macro beeps and displays a counter, to reassure you that it’ll get there

eventually. If you get bored, you can stop the macro with Ctrl-Break.

However, if you want to actually DO SOMETHING with the next bit of highlighted text then SelectNextHighlight will

actually select the next bit of highlighted text, whereas HighlightFindDown leaves the cursor at the beginning of the

highlighted text. And SelectPreviousHighlight does the reverse, of course.

Sub HighlightFindDown()

Sub HighlightFindUp()

Sub SelectNextHighlight()

Sub SelectPreviousHighlight()

Find coloured text
This works in the same way as the previous macro but it finds text that is in a particular font colour, say red or blue or

whatever. Each time you run the macro, it jumps to the next bit of text in your chosen colour. If no text is selected, it

remembers the font colour you looked for last time and finds the next bit of text in that same colour.

If you want to find text in a different font colour, simply select a piece of text in the desired colour and it will look for

the next bit of text in that colour.

The other way to change the text search colour is to select a piece of text that is black. The macro then jumps to the

next piece of non-black text, and you can say ‘yes’ or ‘no’ according to whether this is the colour of text that you want

to search for.

If, however, you click ‘Cancel’, it will assume that you want to look through all the sections of non-black text.

Sub FindColouredText()

Sub FindColouredTextUp()

Jump from (heading) style to style
(This is an old pair of macros, and the macro that follows them might be considered to be an improvement on it.)

The next two macros allow you to move up and down through the text on the basis of the style. So, for example, you

might want to look through the various headings in ‘Heading 1’ style. Just place the cursor anywhere on a line in the

given style and run the appropriate macro – up or down.

Sub FindStyleOld()

Sub FindStyleOldUp()

Jump from (any) style to style
This FindStyle macro is, I think, an improvement on the previous one because I’ve used a different way of doing it.

What this macro does is to assess the bit of text that has been selected by the user, checking if it’s italic or bold or

http://wordmacrotools.com/macros/H/HighlightFindDown
http://wordmacrotools.com/macros/H/HighlightFindUp
http://wordmacrotools.com/macros/S/SelectNextHighlight
http://wordmacrotools.com/macros/S/SelectPreviousHighlight
http://wordmacrotools.com/macros/F/FindColouredText
http://wordmacrotools.com/macros/F/FindColouredTextUp
http://wordmacrotools.com/macros/F/FindStyleOld
http://wordmacrotools.com/macros/F/FindStyleOldUp

small caps or super- or subscript, and then checking whether the font size is different from that of the Normal style

(ditto the font colour and the font name) and then setting those attributes into the F&R. Then all you do is to use your

normal FindFwd and FindBack keystrokes.

This means that, for example, you can select a superscripted character and then skip from one superscript to the next

and back again. Or you could select a bit of a Level 2 heading and jump back and forth between the various Level 2

headings, or select a bit of small caps text and find other bits in small caps.

Practicalities

You can run FindStyle as a separate macro (see TheMacros), but I ‘attach’ it to the FindOnly macro. What I do is add

a few extra lines:

Sub FindOnly()

' Version 16.12.10

' Calling FindStyle from the FindOnly macro

If Selection.Start <> Selection.End Then

 Application.Run MacroName:="FindStyle"

 Exit Sub

End If

myFind = InputBox("Find?", "Smart finder", Selection.Find.Text)

If Len(myFind) = 0 Then Exit Sub

etc, etc

What happens is that if no text is selected then it just goes into the main part of the FindOnly macro, but if some text is

selected (which FindStyle expects) then it runs the FindStyle macro instead, so one keypress fulfils two functions.

Sub FindStyle()

Jump to next applied style
If you’re interested in paragraphs that are not in Normal style, but have an applied style then this macro jumps you to

the next non-Normal paragraph.

Sub JumpNextAppliedStyle()

Jump back to table of contents
After you have hyperlinked from an item in a table of contents (ToC) to that point in the text, it is good to be able to

go back. You can use the command WebGoBack which, using the Customize Keyboard dialog, you can allocate to a

keystroke. However, I found that it wasn’t altogether reliable, so I created a macro that reads the current line, jumps to

the top of the file and finds the first occurrence of that line, i.e. the item in the ToC.

The other advantage of this method is that if you are using the macro above to jump from heading to heading (style to

style) then, whatever heading you have now reached, running this macro will jump you back to exactly the right place

in the ToC.

Sub ToCback()

Jump from comment to comment
(Video: youtu.be/f7jb6zoh8l4)

N.B. These macros are redundant as Word has them built in. From the Customize Keyboard dialogue box (call it up

with the CustomKeys macro!) and select ‘All Commands’ in the left-hand list and then, in the right-hand list, first find

NextComment and give it a keystroke, and then PreviousComment and do the same.

http://wordmacrotools.com/macros/F/FindOnly
http://wordmacrotools.com/macros/F/FindStyle
http://wordmacrotools.com/macros/J/JumpNextAppliedStyle
http://wordmacrotools.com/macros/T/ToCback
https://youtu.be/f7jb6zoh8l4

Yes, I know that you can use the browser arrows down at the bottom right of the window (below the scroll bar down

arrow), but the same browser can be used for jumping between lots of different things. Having set up these two

macros, I can leave the browser for jumping between other things, and know that any time I press Ctrl-Alt-Up or Ctrl-

Alt-Down I’ll be able to skip straightaway between comments.

Sub CommentNext()

Sub CommentPrevious()

Jump into and out of a comment
Someone wanted a keystroke to move the cursor into and out of the comment box – this macro does that.

Sub CommentJumpInOut()

Jump from edit to edit
(Video: https://youtu.be/EaFJuKTbhGw)

If you’re wanting to look through all the track changes in a file – comments and changes – then you don’t actually

need a macro. Yes, I know that there are icons on the toolbar that allow you to go to the next and previous tracked

edit, but if you, like me, prefer to use keystrokes rather than clicking icons, all you need to do is to use the Customize

Keyboard dialogue box (call it up with the CustomKeys macro!) and select ‘All Commands’ in the left-hand list and

then, in the right-hand list, find PreviousChangeOrComment and assign a keystroke to it. And then do the same for the

NextChangeOrComment command.

Similarly for the NextComment command.

However, there is no such thing (well, not in Word 2010) as a NextChange command. (There’s a

NextChangeOrComment and a NextComment, but not a NextChange). So if you want to jump to the changes without

having to go through the comments, here’s a pair of macros.

Sub ChangeNext()

Sub ChangePrevious()

Jump from footnote to footnote
Nothing too earth-shattering, but I just decided it would be useful to look back at the previous (or the next) footnote. If

you’re in the text next to the footnote citation number then the two macros below will jump you between the citations

(e.g. to check that the citation numbers are outside the punctuation – here,13 and not here14.) If you then double-click

the citation number, it will, of course, jump you to the footnote text. From there, the same macros will move you to

the text of the previous or next footnote.

Sub FootnoteNext()

Sub FootnoteNextUp()

Jump between main text and footnotes/endnotes
When someone asked for this, I thought it was hardly worth the effort, but having used it, I can see the value. Put the

cursor anywhere in front of a note call-out, like this,16 and press Alt-N (or whatever) and it looks through to find the

next note and jumps straight into the note text; read and/or edit this note and then, without having to move the cursor

or the mouse, click Alt-N again, and it jumps you straight back into the main text where the note is cited. So there’s no

need to carefully place the mouse pointer and double-click the note number.

http://wordmacrotools.com/macros/C/CommentNext
http://wordmacrotools.com/macros/C/CommentPrevious
http://wordmacrotools.com/macros/C/CommentJumpInOut
https://youtu.be/EaFJuKTbhGw
http://wordmacrotools.com/macros/C/ChangeNext
http://wordmacrotools.com/macros/C/ChangePrevious
http://wordmacrotools.com/macros/F/FootnoteNext
http://wordmacrotools.com/macros/F/FootnoteNextUp

16Here’s the note text (in the footnote area in real use). The cursor can be anywhere in here if you want to jump back.

Sub NoteJumper()

Jump from (section) number to number
(This is fairly basic – The next section gives a more comprehensive system.)

It suddenly dawned on me that it might be useful to be able to jump through a document via the numbered

(sub)sections. So, the first two new macros (NextNumber and NextNumberUp) allow you to put the cursor next to, say,

3.1.1 (just to the left of the 3, I mean) and click (whatever keystroke) and it’ll jump you to ‘3.1.2’, then click again to

‘3.1.3’, ‘3.1.4’ etc – and the other macro takes you back up through the sequence, of course.

The same macros also work for 5.6 −> 5.7 −> 5.8 (and back again), and even for numbers without full points

(periods): 467 −> 468 −> 469 (and back again).

And then I thought that it would be useful if you could jump from Table 3.4 −> Table 3.5 etc, or ditto for Figure 2.7

−> Figure 2.8, or Fig 1.2 −> Fig. 1.3 etc, etc – I’m sure you get the idea!

So the second two macros also look at the four characters before the cursor, and makes those part of the search.

So, basically, you again put the cursor just to the left of the number, and when you run NextNumberPlus (or

NextNumberPlusUp) and it tracks up and down through the numbered tables/figures/equations etc.

However, you can also use this second pair of macros for section numbers, because if the number is the first item on

the line:

2.3 This is the title of my next section

then it clocks that and only looks for 2.4 (or 2.2 if you’re going up) where it occurs at the beginning of the line. This

means that it does not then jump from the heading mentioned above to, say, ‘Figure 2.4’.

Here are the four macros:

Sub NextNumber()

Sub NextNumberUp()

Sub NextNumberPlus()

Sub NextNumberPlusUp()

Jump down through (section) numbers
This is a development of the idea of the previous macro, providing much more flexibility, with the aim of using it to

check the continuity of the numbering in a document. Basically, you place the cursor in the section number or in the

caption for a figure (‘Figure’ or ‘Fig.’), a table (‘Table’) or a box (‘Box’), and each time you run it, it will jump to the

next numbered item in the sequence.

With captions, it detects if there’s one item missing in the sequence. When it gets to the end of a chapter, it tries to

find the first caption in the next chapter. So, for example, at 3.4, it looks for 3.5; if it can’t find it, it looks for 3.6 and,

if it finds it, it tells you 3.5 is missing. But if there’s no 3.6 either, it looks for 4.1.

If the section numbering is hierarchical, it performs the following checks, stopping if it gets an affirmative:

1) Add ‘.1’ to see if the section has a subsection (e.g. 4.2.3 −> 4.2.3.1).

2) Look for the next number up (e.g. 4.2.3 −> 4.2.4).

http://wordmacrotools.com/macros/N/NoteJumper
http://wordmacrotools.com/macros/N/NextNumber
http://wordmacrotools.com/macros/N/NextNumberUp
http://wordmacrotools.com/macros/N/NextNumberPlus
http://wordmacrotools.com/macros/N/NextNumberPlusUp

3) Check for the next number up (e.g. 4.2.3 −> 4.2.5), alerting you if there’s a missing number.

4) It also checks for the next number up (e.g. 4.2.3 −> 4.2.6) in case two in a row are missing.

5) Check the next number down the hierarchy (e.g. 4.2.3 −> 4.3)

6) Jump to the next chapter (e.g. 4.2.3 −> 5.1)

Sub FindNextNumber()

As an extra aid, FindNextNumber remembers ‘where it has come from’, so if you want to jump back to the previous

number, just run this extra macro. (I have FindNextNumber on Shift-Alt-Right, and FindPreviousNumber on Shift-

Alt-Left as a way of thinking moving forward through the text and then one step back again.)

Sub FindPreviousNumber()

Jump to an item in an auto-numbered list
The editor who requested this had a document with a long numbered list, each item consisting of one or more

paragraphs. Then through the rest of the text were citations of, for example, ‘see item 32’. The editor had to check that

item 32 really was the item being referred to, but the trouble was that the list was auto-numbered, so you couldn’t just

search for, say, ‘32.’ or ‘32)’ or ‘32^t’ because auto-numbers can’t be searched with normal F&R. So a macro was

needed. Here’s one possible solution.

You open a second window on the file. Click on the citation number (say, 32) in one window and run the macro. It

will take you straight to that item in the list, but in the other window.

Sub ListItemFinder()

In complex files that contain a number of different lists, the macro needs to know which list you’re referring to, so you

place the cursor at the beginning of the list you actually want to search, and run a second macro:

Sub ListCheckStart()

This macro suggests a value for myOffset at the beginning of the other macro. For example,

myOffset = 12

Jump to next/previous table
If you want to look through all the tables in a document, these two macros jump you back and forth through them, one

by one.

Sub TableNext()

Sub TablePrevious()

Jump to next/previous paragraph that has borders
If you want to look through all the text in a document that is surrounded by a border, these two macros jump you back

and forth through them, one by one. (If these macros don’t work properly, please let me know. They haven’t been fully

tested, sorry.)

Sub BordersNext()

Sub BordersPrevious()

http://wordmacrotools.com/macros/F/FindNextNumber
http://wordmacrotools.com/macros/F/FindPreviousNumber
http://wordmacrotools.com/macros/L/ListItemFinder
http://wordmacrotools.com/macros/L/ListCheckStart
http://wordmacrotools.com/macros/T/TableNext
http://wordmacrotools.com/macros/T/TablePrevious
http://wordmacrotools.com/macros/B/BordersNext
http://wordmacrotools.com/macros/B/BordersPrevious

List all figures/tables/boxes
(Video: youtu.be/DnG1XCuOUlk)

This looks down through the text and finds every single reference to Figure/Fig/Fig., Table and Box, and lists them in

a separate file. You then end up with a list such as:

 Table 3.1

 Table 3.1

Table 3.1:

 Table 3.2

Table 4.1:

Table 4.2:

 Table 4.2

 Table 4.3

 Table 4.3

Table 4.3:

 Table 4.3

Table 5.1

Table 6.1

 Table 6.1:

 Table 6.2.

Table 6.2:

 Table 6.2

Table 6.3:

Table 6.4:

Table 6.5:

 Table 6.5

 Table 6.6

Table 6.6:

 Table 7.1

 Table 7.2

Table 7.1:

Table 7.2:

 Table 7.3

Table 7.3

 Table 8.1

Table 8.1

 Table 8.2

 Table 8.2

Table 8.2

 Table 8.3

Table 8.3

 Table 10.1

Table 10.1:

Plurals

Tables 4.5 and 4.6

Tables 6.3–6.5

To make it easier to see what’s what, if the reference is in the middle of a paragraph, it’s presumably a citation, not a

caption, so the macro adds a tab in front of it. However, if (e.g. in 4.3 and 6.1 above) the reference appears at the start

of a paragraph (i.e. looks like a caption), and yet there already seems to be a caption for that item, it adds two tabs –

just as a way of making it stand out.

Then after creating the list, it checks through to see if any of the items has a caption but is not cited, or vice versa, in

which case it highlights it.

But sometimes the citation is something like “Tables 6.3–6.5 show...” in which case it lists those citations at the end

under “Plurals”, so you can check whether those citations cover the (apparently) missing items.

https://youtu.be/DnG1XCuOUlk

N.B. As a quick way to check the consecutiveness of the numbers, you can use FindNextNumber to run through from

the first item against the left margin, auto-repeating the macro (assuming it’s assigned a keystroke). If there’s a

number missing, it’ll bleep at you and tell you.

Another way in which consecutiveness can be checked is that the macro lists any lines starting “<Cap>” (or whatever

you set at the beginning of the macro code):

<Cap>Figure 12.1 A detailed battery model applicable to NiMH

<Cap>Figure 12.2 Generic battery model.

<Cap>Figure 12.3 Typical battery powered electric vehicle dr

<Cap>Figure 12.4 First-order equivalent circuit model of the

<Cap>Figure 12.5 OCV versus SOC.

<Cap>Figure 12.6 Lumped parameter model of parallel-connected

<Cap>Figure 12.7 Ohmic resistance Rt identification result.

<Cap>Figure 12.7 Ohmic resistance Rp identification result.

<Cap>Figure 12.9 Ohmic resistance Cp identification result.

<Cap>Figure 12.10 MATLAB Simulink implementation of the mode

<Cap>Figure 12.11 Hybrid battery model.

You can immediately see inconsistencies.

Finally, when you are running this macro from within FRedit, make sure that, at the beginning of the macro it says:

mainDocBackToFront = True

which means, “bring the file you’re testing to the front” at the end of the listing process. Otherwise, the other items in

the FRedit list will be executed on the fig/tab/box list instead of the actual chapter text.

Sub FigTableBoxLister()

Create a list of all fig/tab/box captions
This looks down through the text and finds all occurrences of lines that have ‘Fig’, ‘Tab’ or ‘Box’ in bold, i.e.

captions for said items. It creates a list of them in a new file.

If they aren’t in bold it will miss them! So change the line:

captionsAreBold = True

to False. That’s fine, but any paragraphs starting “Figure 4.3 shows...” will also be included.

Sub CaptionsListAll()

Find short paragraphs (lists)
This looks down through the text and finds the next short paragraph. Useful if you’re trying to look through at all the

lists in a long document.

Sub ParaShort()

http://wordmacrotools.com/macros/F/FigTableBoxLister
http://wordmacrotools.com/macros/C/CaptionsListAll
http://wordmacrotools.com/macros/P/ParaShort

Highlight all lists
If you want to go through a text looking at all the lists and doing things to them, it might be helpful to highlight them

all so that you don’t miss any. This macro adds a green (or whatever you prefer) highlight to every line/paragraph

longer than 10 characters (minLength) and shorter than 150 characters (maxLength) (or whatever you prefer).

Sub ListHighlighter()

Go to page
If you want to jump to a specified page number, you can, of course, use <Ctrl-F> and then select Go To Page, but this

is much quicker. Instead, just press Alt-G (or whatever) to run the macro, type in the page number and press Enter.

Sub PageHopper()

And this more complex-looking one puts the first line of the selected page right up near the top of the screen, so that

you see as large a section of the selected page as possible. This makes it easier to find the part of the selected page you

want.

Sub PageHopper2()

Easier scrolling
If you are reading the text on screen and editing as you go, how do you move the text up the screen as you read? I

guess most people use the scroll-wheel on the mouse. I used to, but sometimes found that, as the screen display

jumped up, I lost my place.

Here’s the tool I now use. If you click somewhere in the line you are reading and run this macro, that line moves up

the very top of the screen – so it’s very easy to find.

And you can set it so that the macro leaves the cursor-line as the first, second, third line of the screen – your choice.

For example,

endLineNumber = 2

means it leaves the cursor-line as the second line of the screen.

Sub JumpScroll()

Lost cursor – where was I?!
It may sound silly, but on a complex page, I sometimes put my cursor in a paragraph, get distracted by something and

then can’t find where I was up to. The solution is easy – use JumpScroll. This brings your cursor position up to the top

of the page and therefore makes it easier to find.

Actually, I find it even more useful when I’m reading and reading and reading through some text. I put the cursor in

the bit of text I’ve got up to and run JumpScroll, which brings the page up further with the cursor line at the top of the

page.

List of headings
(Some of the other macros now available in this section, such as FindStyle and SmartFinder, may have made this

redundant, but it might still be useful for some purposes.)

http://wordmacrotools.com/macros/L/ListHighlighter
http://wordmacrotools.com/macros/P/PageHopper
http://wordmacrotools.com/macros/P/PageHopper2
http://wordmacrotools.com/macros/J/JumpScroll

When you run it, it creates, in a separate file, a list of the various headings. You can use this list to give you an

overview of your document if you want to move about the document a fair bit.

So you can move to a specific line (heading) in the list-of-headings file, run the macro, and it drops you at that

heading in the text. Run the macro again, and you’re back in the list-of-headings file. You can save the list-of-

headings file for future use. However, if you want to create a new list, simply select some text – any text – and the

macro takes that as a sign that you want to create a new list, although it does ask if that’s what you want to do, just in

case that’s not what you meant to do.

You can set up the style names that the macro will look for at the top of the macro – currently, it’s set to find three

styles: ‘Heading 1’, ‘Heading 2’ and ‘Heading 3’. However, there is another way of setting it up which overrides these

names.

At the very end of the file whose headings you want to list, put the word ‘Heading’, several times, in the

various different heading styles that you want it to deal with:

Heading

Heading

Heading

The macro will then read these and copy them across to the ListOfHeadings file which means that the list will use the

styles as defined in the document you’re working on.

Sub ListofHeadings()

List of headings by style
This macro creates a list, in a separate document, of all the headings in a file. It does so according to the style:

Heading 1,Heading 2,Heading 3 etc. You could use it to list other style-based sections of text by putting the style

names in the list at the head of the macro.

Sub ListAllHeadings()

Show paragraph style colour + applied colour
If you want to know what the font colour of the current style is, and whether there is any other font colour applied on

top of that style colour, this macro will tell you. It can display the colour numbers in hex and/or decimal.

Sub FontColourReader()

Display and/or speak the style of a paragraph
If you want to know what the style of the current paragraph, this macros speaks it and/or pops up a message box.

Sub StyleDetector()

Find any of these words
This macro allows you to specify a number of different words and to jump straight to the next occurrence of any of the

words from your list.

The words to search are set in the line:

myWords = ":and:or:but:so:yet:if:"

you can add/subtract/change the list accordingly.

http://wordmacrotools.com/macros/L/ListofHeadings
http://wordmacrotools.com/macros/L/ListAllHeadings
http://wordmacrotools.com/macros/F/FontColourReader
http://wordmacrotools.com/macros/S/StyleDetector

Sub SearchTheseWords()

http://wordmacrotools.com/macros/S/SearchTheseWords

