

12 Editing – text change ____
As you are reading the text, you do lots of minor editing actions: adding a comma, hyphenating two words, switching

the order of words two (sic) etc. So, if you ‘watch’ yourself at work, you’ll see which of these actions you do most

frequently, and therefore which, if speeded up, could (a) save you a little bit of time (and little bits all add up), and

more importantly (b) enable you to make those minor changes automatically without taking your attention off the

meaning of the text that you are reading; you’re then less likely to make that classic mistake of missing the second of

two closely adjacent mistakes in the text.

For these macros to be of most use, they have to be assigned to keystrokes, which means having to remember them.

So that means (a) choosing keystrokes that you find memorable and/or (b) only assigning macros to things that you

will use regularly. However, if you start by using just a few of these ‘mini-macros’, you will become confident with

them, and then you can add some more, and gradually you will build up your speed and effectiveness in using them.

Change case of next letter
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

This macro changes the case of the letter to the right of the cursor. If you were to put the cursor to the left of the ‘c’ of

‘changes’ and run the macro repeatedly, you would get:

C|hanges

CH|anges

CHA|nges

CHAN|ges

etc.

Now go back to the ‘C’ and do it again, and you’d get:

c|HANges

ch|ANges

cha|Nges

chan|ges.

If you assign this macro to a suitable key shortcut, you can even hold the key down and auto-repeat if necessary.

Sub ToggleNextCharCase()

You could use this simpler, and more ‘obvious’ format of macro:

Sub ToggleNextCharCase2()

' Version 28.09.09

' Change case of the next character/selection

Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend

Selection.Range.Case = wdToggleCase

Selection.MoveRight Unit:=wdCharacter, Count:=1

End Sub

However, when you are using track changes, Word does not track these case changes!

So there’s a version of the macro that includes both of the above with an option at the beginning so that you can use

the same keystroke but, by changing the first line of the macro, you decide whether to have track changes showing

(trackIt = True) or not showing (trackIt = False).

https://youtu.be/_ijsRqUR1fE
http://wordmacrotools.com/macros/T/ToggleNextCharCase
http://wordmacrotools.com/macros/T/ToggleNextCharCase2

In fact, this version also has another feature: if no text is selected then, as before, it changes the case of the next

character; however, if some text is selected, it changes it all to lowercase or uppercase. This means that the one macro

can do more than one job.

What’s more, it tries to do it ‘intelligently’; that is, it looks to see how much of the selected area is already

uppercase/lowercase and decides on the basis of a ‘vote’, which way to case it: i.e if most of it is in lowercase, it

assumes you want the whole thing uppercase, and vice versa.

But if it gets it wrong, all you do is run the macro a second time and it reverses the case.

Sub CaseNextChar()

Change case of initial letter of next word
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

This changes the case of the first character of the following word. If this is assigned to a keystroke, you can quickly

and easily change a line of text to all initial caps. (See also the TitleCapper macro.)

The simple way to change case would be to use Word’s case-change command:

Selection.Range.Case = wdToggleCase

but this does not generate a track change, so the macro, as written, makes the change by deleting the initial letter and

then typing in a letter of the opposite case (as in the previous macro) – this will now show up on track changes. If you

have a job where there are lots of case changes and you don’t want to show them, you can change the initial line of the

macro to ‘trackit = False’.

As with the previous macro, if an area of text is selected, it changes all of the text to initial capitals or lowercase.

Sub CaseNextWord()

This new version is more intuitive for some: You click in the word whose case needs changing, and when the case has

been changed, it jumps right one word, just in case you want to change the next word too.

Sub CaseThisWord()

And if you’re a really, really sad macromaniac, here’s a macro which switches the case of the initial letter – not of the

next word but the next-but-one word. Ctrl-Alt-S for me switches the initial of the next word and so, ‘stretching a bit

further to the right’, Ctrl-Alt-D changes the next-but-one word.

Sub CaseSecondNextWord()

Change case of initial letter of the paragraph
I have one client who constantly has lists where you:

• Have one line

• And another line

• Then another line

http://wordmacrotools.com/macros/C/CaseNextChar
https://youtu.be/_ijsRqUR1fE
http://wordmacrotools.com/macros/C/CaseNextWord
http://wordmacrotools.com/macros/C/CaseThisWord
http://wordmacrotools.com/macros/C/CaseSecondNextWord

• And all have a blessed initial capital!

The macro below allows you to put the cursor (anywhere) on the first line, run it, and it changes (toggles) the case of

the first character of that line, but then it moves down a paragraph so that you are then ready to run it again to change

the next item, and again, and again – click, click, click, click, and all four are changed.

Sub CaseNextPara()

Paragraph to start lowercase and end with semicolon
If you’ve got to look through loads of words in a text that have initial caps and might need down-casing, here’s a tool.

Run the macro, and it starts from wherever the cursor is placed. It looks for an initial capital letter that is *not* the

first word in a sentence. (But Word's idea of what constitutes a sentence is a bit odd sometimes!)

You then have Yes, No and Cancel. The first changes to lowercase, the second doesn't and just skips off to find the

next initial-cap word.

The last drops you out of the macro. That's useful if you come to a paragraph with loads of people/place names. You

can stop the macro, click further down, past all the initial caps that aren't needing to be changed and start the macro

running again.

It may be that there are way too many init-cap words that aren't your chemical things to make the thing viable, but if

not, you're still going to have to find them somehow.

Sub MidSentenceCapitalRemove()

Paragraph to start lowercase and end with semicolon
This is for those clients who want every item in a bulleted list to start with a lowercase character and end with a

semicolon. As with the previous macro, it does the job on one line and jumps down a line ready to do the same on that

line. OK, on the last line you only want to lowercase the initial letter but not add the semicolon, so you have to use

CaseNextPara instead. And then you go back a line and add you ‘ and’ after the semicolon.

The following macro does the whole list at one go!

Sub SemicolonEndPara()

Semicolonising a list (+ lowercase start letter)
You have a bulleted list (either auto-bulleted or with editable bullets), and you want to make sure that (a) every item

starts with a lowercase character, and (b) that every item ends with a semicolon, but (c) the final item has a full stop,

and (d) the penultimate item has ‘; and’ (this last is optional).

This macro does it all. Place the cursor on the first line of the list and run the macro – job done!

Because it ‘shoots’ through the bullets so quickly, I’ve added a ‘safety catch’ (pun intended). After having done 10

bullet points, it asks whether you want to continue. This is just in case you encounter a list that is, say, actually in

Normal or Body Text style, in which case it would keep going until it found a paragraph that was not in that style. OK,

you can Ctrl-Z your way back, but it would be a bit of a pain. (You can change the frequency of these checks using the

checkLength = 10 line.

If you don’t want the ‘ and’, then use addAnd = False.

Sub ListLowercaseSemicolon()

http://wordmacrotools.com/macros/C/CaseNextPara
http://wordmacrotools.com/macros/M/MidSentenceCapitalRemove
http://wordmacrotools.com/macros/S/SemicolonEndPara
http://wordmacrotools.com/macros/L/ListLowercaseSemicolon

Semicolonising a list
For some applications, you might not want to force all the initial letters of every item to lowercase. This version just

does the semicolonising and the (optional) and-ing.

Sub ListSemicolon()

Lowercasing a list and no punctuation
(Video: youtu.be/AYgsFmFA7gU)

For some applications, you might want to force the initial letters of each item to lowercase and also remove the

punctuation on the end of each item. This macro does this a line at a time. It also tries to work out if it’s the last item

in the list, in which case you might want to keep the full stop on the last item.

Doing it a line at a time can sometimes be helpful where some items begin with a proper noun or an acronym. If so,

for that line you just delete the punctuation manually and run the macro on the following item.

You can decide not to track these changes, even if track changes are switched on. This is set by the line at the

beginning of the macro:

trackThis = True

Just change it to False.

Sub ListLowercaseNoPunct()

Uppercasing a list and no punctuation
Ditto to the above macro, but uppercasing the first letter of each item.

Sub ListUppercaseNoPunct()

Adding full point to ends of bullet items
One publisher I work for insists that all figure and table captions should have a full point, whether the text forms a

sentence or not. This macro looks for a specific tag (<Cap>, but you can change it) and, if necessary, adds a full point

(period).

Sub FullPointOnBullets()

Type, delete or switch ‘the’/‘a’/‘an’ (‘The’/‘A’/‘An’)
(This macro gets a mention in video: youtu.be/mVBJ1jjQwdk)

This sounds a bit odd, but it’s for those occasions where your author is from a language that doesn’t have definite and

indefinite articles (e.g. Chinese and E. European). This macro aims to deal with cases where an article needs adding,

deleting or switching a/the or vice versa.

1) Place the cursor anywhere within a word and a ‘the’ is added in front of it. (Don’t worry about capitalisation

because the macro will change, say, ‘previous sentence. Next sentence starts here...’ into: ‘previous sentence. The next

sentence starts here...’

2) If you click in a word that already has an article ‘the’/‘a’/‘an’ then it switches between definite and indefinite.

http://wordmacrotools.com/macros/L/ListSemicolon
https://youtu.be/AYgsFmFA7gU
http://wordmacrotools.com/macros/L/ListLowercaseNoPunct
http://wordmacrotools.com/macros/L/ListUppercaseNoPunct
http://wordmacrotools.com/macros/F/FullPointOnBullets
https://youtu.be/mVBJ1jjQwdk

3) If you want to delete an article, click in the article to be deleted – the macro again sorts out the capitalisation.

4) If you want to add a/an/A/An in front of a word, you can either use the next macro, TypeA, or if you select the

word instead of just clicking in it, then this macro knows to adds an indefinite article. You can decide which you find

more intuitive – remember a new keystroke or remember to double-click the word.

(I use Alt-T for TypeThat, and Alt-E for this macro, as I think of it as typing ‘thE’. So then between keys E and T is

R, so I use Alt-R for TypeA.)

Sub ArticleChanger()

Type ‘a’ (or ‘A’), ‘an’ (or ‘An’)
(This macro gets a mention in video: youtu.be/mVBJ1jjQwdk)

By the same token here’s a macro for a/an/A/An.

 Sub TypeA()

Type ‘that’
(Video: https://youtu.be/hqPVJSZsFDk)

For those occasions where your author leaves out ‘that’ a lot of times, just aim the cursor into the word after which

‘that’ needs adding, and run the macro.

Sub TypeThat()

Type ‘the’
(Video: https://youtu.be/hqPVJSZsFDk)

For those occasions where your author leaves out ‘the’ a lot of times, or indeed includes ‘the’ where it’s not needed

just aim the cursor somewhere in the word that needs to have ‘the’ in front of it, and run the macro and ‘the’ will be

added – but if the words is at the beginning of a sentence, then ‘The’ will be added, and the following word will be

down-cased.

Conversely, if ‘The’ starts a sentence and needs removing it, click in it, and the macro will remove it and up-case the

following word.

Sub TypeThe()

(Now replaced by ArticleChanger)

Add accents to characters
The issue here is when the text you’re given doesn’t have any of the required accents – e.g. ‘garcon’, ‘elan’, ‘a la’ –

and it’s not possible to correct all the words by global find and replace. This means that the accents have to be added

as you actually read the text. So to enable you to keep your focus on the wording, you want to be able to add accents

quickly and easily. OK, so try this.

Here’s your text (please forgive my Google-French!):

 Vous avez un elan tres a la mode. Ou sont les garcons?

http://wordmacrotools.com/macros/A/ArticleChanger
https://youtu.be/mVBJ1jjQwdk
http://wordmacrotools.com/macros/T/TypeA
http://wordmacrotools.com/macros/T/TypeThat

So you place the cursor somewhere in front of ‘elan’ and run CharToAcute; the macro moves along the line until it

finds the ‘e’ and changes it to ‘é’.

Then put the cursor in front of ‘tres’ and run CharToGrave; in fact, if you run CharToGrave twice – click, click – it

does both ‘très’ and ‘à la’. (I’ll come back to ‘Ou’ in a minute.). Then in front of ‘garcons’, and run

CharToVariousAccents to get ‘garçons’.

I suggest you use keystrokes that are memorable to you, say Alt-[for acute and Alt-] for grave and maybe Alt-V for

CharToVariousAccents. Whatever!

The macros also work with capitals; and CharToVariousAccents does both ‘ç’ and ‘ñ’ and capitals., so it also works

for ‘los niños’ for Spanish. Hopefully, you get the idea.

And there’s a macro for umlauts and one for circumflexes.

Now, coming back to ‘Ou’, with the CharToGrave macro as it stands, you would have to put the cursor, exactly

between the ‘O’ and the ‘u’, which slows the process down. That’s because the macro is set up to give graves for all

five vowels. It uses these lines:

myChars = "aeiouAEIOU"

myAccents = "àèìòùÀÈÌÒÙ"

But for French, you could slim that down (I think!) to:

myChars = "aeuAEU"

myAccents = "àèùÀÈÙ"

Is that right? I don’t think French uses ‘ì’ and ‘ò’, does it?

Anyway, it’s up to you to tailor the macro. The point is, if I reduce myChars and myAccents, as I’ve suggested, I

could just point the cursor somewhere in front of ‘Ou’.

Hopefully the macros are simple enough for you to fiddle around with the selection of accents they provide, to suit

your own language use. And if there are other accents you want, you can create other macros using exactly the same

pattern.

Sub CharToAcute()

Sub CharToGrave()

Sub CharToCircumflex()

Sub CharToUmlaut()

Sub CharToVariousAccents()

Add a macron to the next vowel
(A macro kindly provided by Christopher Goj from New Zealand)

If you are processing Maori texts. you might have trouble with your macrons! The Maori language uses macrons

liberally, which usually get lost if the text has been OCRed. So as you read, this ‘macron macro’ will allow you to add

a macron to the next vowel.

Sub CharToMacron()

http://wordmacrotools.com/macros/C/CharToAcute
http://wordmacrotools.com/macros/C/CharToGrave
http://wordmacrotools.com/macros/C/CharToCircumflex
http://wordmacrotools.com/macros/C/CharToUmlaut
http://wordmacrotools.com/macros/C/CharToVariousAccents
http://wordmacrotools.com/macros/C/CharToMacron

Add (real) bullets to a list

If you want to add real bullets to the items in a list, just click somewhere in the first paragraph and shift-click

somewhere in the final paragraph, and the macro will do the rest.

As it stands, the bullet is put into Wingdings 2 font, but If you just want it in the same for, make

funnyFont = ""

and if you prefer a tab after the bullet, there’s an alternative line given in the macro:

mySeparator = Chr(9)

Sub ListBulleter()

Reducing all-capitals to initial cap
If you have a load of headings in ALL CAPITAL LETTERS where you want to selectively reduce the words to

Lowercase With Initial Caps, these two macros might speed you up. The first one searches the text for a run of four

capital letters, and the second one selects the current word and changes its capitalisation to lowercase with an initial

capital, and then it jumps straight to the next run of four capital letters.

What is the logic? Set the first macro to, say, Ctrl-Alt-I (for ‘initial’), and the second one to Alt-I. Then to use the

macros, you start with a heading and use Alt-I repeatedly to change each of the words in the title to initial capital. But

if it finishes a heading and then the next word it finds is an acronym in the middle of a paragraph (NATO, say), you

probably want to leave it in full capitals, so you press Ctrl-Alt-I, which will make no change and simply jump you to

the next word in full capitals. So, you hold the Alt and click the <I>, but then hold down Ctrl to indicate ‘don’t change

this one – jump to the next’.

Sub InitialNext()

Sub InitialCapOnly()

Lowercase this phrase throughout
You’re working on a big file, and there are lots of Special Phrases where the author has used Unnecessary Initial

Uppercase Characters. This macro allows you to select one and, at a click, globally F&R them down to lowercase.

Unnecessary Initial Uppercase Characters do, I realise, sometimes come at the start of a sentence, so the macro has an

option to highlight all the changes, so that you can keep an eye out for such an occurrence. However, if you would like

me to extend this macro so that it checks whether the phrase is indeed at the start of a sentence and, if so, uppercase

the the initial letter, I’ll happily do so – do just ask me.

Sub LowercaseGlobal()

Select current word
(Video: https://youtu.be/hqPVJSZsFDk)

I find this deceptively simple macro very useful. (But it takes ages to explain why!)

Example: The cat ‘sat’ on the mat.

http://wordmacrotools.com/macros/L/ListBulleter
http://wordmacrotools.com/macros/I/InitialNext
http://wordmacrotools.com/macros/I/InitialCapOnly
http://wordmacrotools.com/macros/L/LowercaseGlobal

If you double-click the word ‘cat’ in the above, Word selects the word ‘cat’ and the following space (no problem), but

if you double-click the word ‘sat’, Word selects the word and the apostrophe and the following space. (Don’t ask me

why Microsoft did it that way!)

So, if you just want to select the actual word ‘sat’, click in the word and run the macro (using a keystroke, of course,

for speed).

Now, consider the following sentence (which obviously needs editing):

 The cat on the mat sat.

Clearly, you want to select ‘sat’, and move it back between ‘cat’ and ‘on’. To be more precise, you want to select

‘<space>sat’. So, put the cursor in ‘sat’ and click the macro twice: once and it selects ‘sat’, twice and it selects the

space as well – somewhat quicker than trying to do it by drag-select with the mouse.

Now, each subsequent time you click the macro, it adds another word to the selection – plus its preceding space. So, as

a silly but illustrative example, you could have put the cursor somewhere in ‘mat’, and clicked four times to select

‘<space>on the mat’, and then moved those three words after ‘sat’.

Sub SelectWord()

Expand or contract the current selection, start or end
Based on the idea of SelectWord above, I’ve created a set of four macros for manually (i.e. with keystrokes) extending

and shrinking the current selection. In turn, the four extend (or contract) the beginning (or end) of the current

selection. So, at each macro-run, the selection steps either by a whole word or by one character at a time through the

spaces and punctuation.

A set of four macros for manually (i.e. with keystrokes) extending and shrinking the current selection. In trun, the four

extend (or contract) the beginning (end) the current selection, stepping at each run of one of the macros by a whole

word or character by character through the spaces and punctuation.

SelectionEndExtend – Pushes the end of the selection further out to the right (i.e. extends it)

SelectionEndShrink– Pulls the end of the selection back to the left (i.e. shrinks it)

SelectionStartExtend – Pushes the start of the selection further out to the left (i.e. extends it)

SelectionStartShrink – Pulls the start of the selection back to the right (i.e. shrinks it)

So, in terms of keystrokes, you might use, say keys 2 and 3 on the numeric keypad (i.e. near to your hand on the

mouse), then use Ctrl-Alt with 2 and 3 to extend the selection (the most common requirement, probably), with 2 being

the beginning (left) and 3 the end (right).

Then for changing your mind and shrinking the selection, you could add the Shift key, so Shift-Ctrl-Alt with 2 and 3

to shrink (contract) the selection.

You need to think out what would work for you, if you fancied trying this.

Sub SelectionStartExtend()

Sub SelectionStartShrink()

Sub SelectionEndExtend()

Sub SelectionEndShrink()

http://wordmacrotools.com/macros/S/SelectWord
http://wordmacrotools.com/macros/S/SelectionStartExtend
http://wordmacrotools.com/macros/S/SelectionStartShrink
http://wordmacrotools.com/macros/S/SelectionEndExtend
http://wordmacrotools.com/macros/S/SelectionEndShrink

Select current sentence/paragraph/page
The second of these four is the most useful for me. Click somewhere in the sentence, run SelectSentence, and then you

can copy/cut/paste/highlight/italicise/etc the sentence. I said ‘paste’ deliberately. For example, if the author has given

you an alternative version of a sentence, you can copy the new sentence and then click somewhere in the old sentence,

select the sentence with the SelectSentence macro, click Ctrl-V, and the new sentence totally replaces the old one’.

At the request of an editor, I’ve extended the actions of SelectSentence. It first selects the sentence around the cursor,

then if you run it again, it adds the sentence to the right to the selection, then the next to the right, etc.

However, if the rightmost sentence is the final sentence in the para, it adds the previous sentence to the selection. And

then if that hits the start of the sentence, it then extends the selection into the sentences of the following paragraph.

Then the other two, SelectWord and SelectCurrentPage, do the same for the current word and the current paragraph.

OK, you can double-click a word or double-click a paragraph, but some people prefer a keystroke to a mouse click.

Also, if you double-click a word that has a curly quote following, the curly close quote also gets selected, but the

macro selects just the word.

I’m not sure why one would want to select a page, but someone on the CE-L mailing list wanted one, so you can now,

at a keystroke, also select a page.

Sub SelectWord()

Sub SelectSentence()

Sub SelectParagraph()

Sub SelectCurrentPage()

Select whole words
Someone wanted to be able to do a quick rough selection of some words (as indicated earlier in this sentence by the

use of grey highlighting), and then run a macro to round the selection to the very beginning of the first word and the

end of the final word.

(In case you’re wondering about the two ‘funny’ lines in the middle, you might have noticed that Word’s idea of what

constitutes a ‘word’ is a little idiosyncratic. For example, if you double-click on ‘word’ in this sentence, you end up

with the selection as indicated by the highlight, but if you double-click on this “word” here, it selects correctly. So the

two clever lines, which Howard Silcock told me about, ‘pull back’ the selection past the space and then past the single

close quote.)

Sub SelectTheseWords()

Delete this word
(Video: https://youtu.be/hqPVJSZsFDk)

Place the cursor anywhere in a word, and run this macro to delete that word.

However, it’s a bit more intelligent than that! It tries to work out what you think of as the current “word”, not what

Word thinks of as a “word”!

It also works with Word’s Dictate facility: it deletes the last word(s) that Dictate just typed in for you, and that you

didn’t mean to say!

Sub DeleteOneWord()

http://wordmacrotools.com/macros/S/SelectWord
http://wordmacrotools.com/macros/S/SelectSentence
http://wordmacrotools.com/macros/S/SelectParagraph
http://wordmacrotools.com/macros/S/SelectCurrentPage
http://wordmacrotools.com/macros/S/SelectTheseWords
http://wordmacrotools.com/macros/D/DeleteOneWord

Delete the rest of the sentence
This macro deletes from the end of the current word to the end of the sentence.

N.B. At the request of fiction editors, it also changes the punctuation of quoted text, thus:

“This is a test,” Lisa said. Then she went for a cup of tea.

becomes

“This is a test.” Then she went for a cup of tea.

Sub DeleteRestOfSentence()

Delete to the next punctuation mark
This macro deletes from the end of the current word to the next punctuation mark, be it comma, colon, full stop etc.

It can be used to incorporate the functionality of DeleteRestOfSentence, since full stop is equally a punctuation mark.

But what if the rest of the sentence includes comma, say? No problem. Just click the key shortcut twice:

Cursor in ‘sentence’ (simulated by a ‘|’)

 Here is my sample sent|ence, and I want to want to think, whether I can delete all the rest.

One click gives:

 Here is my sample sentence|, whether I can delete all the rest.

The second click gives the desired:

 Here is my sample sentence|.

Sub DeleteToNextPunctuation()

Delete the rest of the line
This macro deletes from the beginning of the current word to the end of the line (paragraph).

Sub DeleteRestOfLine()

Move final phrase in a sentence back to the cursor position
This was requested by a German editor, but it might possibly be good for English? Possibly?

Two examples:

1) Sie fühlten si|ch wegen des guten Wetters, das in den vergangenen Tagen herrschte, absolut gesund.

has to become:

Sie fühlten sich absolut gesund wegen des guten Wetters, das in den vergangenen Tagen herrschte.

2) Meine Chemie|versuche, als ich noch ein Schuljunge war, der unbedingt den Nobelpreis gewinnen wollte,

waren immer nur von mäßigem Erfolg gekrönt.

http://wordmacrotools.com/macros/D/DeleteRestOfSentence
http://wordmacrotools.com/macros/D/DeleteToNextPunctuation
http://wordmacrotools.com/macros/D/DeleteRestOfLine

has to become:

Meine Chemieversuche waren immer nur von mäßigem Erfolg gekrönt, als ich noch ein Schuljunge war, der

unbedingt den Nobelpreis gewinnen wollte.

So the macro cuts the final phrase of a sentence (i.e. after the final comma) and pulls it to just after the word in which

the cursor is sitting (simulated by the vertical bar in each of the two examples above).

Sub FinalPhraseMoveForward()

Remove final character of a word
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Use this, say, to take the ‘s’ off ‘bugs’, or twice to take the ‘er’ off ‘bother’. This will only remove the final alphabetic

character, not the punctuation, so in ‘He caught an insect (bugs) yesterday.’, it will again take the ‘s’ off ‘bugs’.

Sub FinalCharDelete()

Remove punctuation at end of a word
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Use this to delete the comma or quote mark or whatever non-alpha character follows a word. However, if the word

also starts with an open quote, it will remove that too. So, in ‘He caught some (other) insects or ‘bugs’ yesterday.’ if

you click in ‘other’, it will take both parentheses off, and if in ‘bugs’, it will take the quotes off.

(You can also use it just to remove the final character of a word, e.g. to take off the rogue ‘s’ in ‘insectss’: ‘He caught

some (other) insectss or ‘bugs’ yesterday.’

Sub PunctuationOffRight()

Remove quotation marks from both ends of some text
These macros remove the quotation marks (single or double) from the ends of a sentence or paragraph.

Place the cursor somewhere within the text, and the macro searches backwards and removes the open quote, then

forwards to find and remove the next close quote.

For double quotes, this is pretty painless. However, a close single quote is, of course, the same as an apostrophe, but

the answer is not to just place the cursor anywhere in the text, but to place it in the final word of the text.

Sub QuotesOffBothEndsSingle()

Sub QuotesOffBothEndsDouble()

Remove the punctuation nearest the cursor
This macro will remove the spurious character nearest to the cursor. However, it ignores ordinary parentheses and

square brackets, choosing other characters instead. As set, it ignores alpha characters, numeric characters, () and [], but

you can adjust these, if you wish:

http://wordmacrotools.com/macros/F/FinalPhraseMoveForward
https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/F/FinalCharDelete
https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/P/PunctuationOffRight
http://wordmacrotools.com/macros/Q/QuotesOffBothEndsSingle
http://wordmacrotools.com/macros/Q/QuotesOffBothEndsDouble

ignoreThese = ")(][/0123456789"

Sub PunctuationOffNearHere()

Single quotes round a word
Place the cursor anywhere within a word and this macro will add single quotes around that word.

For German users, change to useGermanQuotes = True. That will give you, e.g. ‚quotes‘.

Sub ScareQuoteAdd()

Double quotes to single quotes
Place the cursor somewhere in the text between a pair of double quotes, run the macro, and it changes them to single

quotes. (It will beep at you if it can’t find either an open or a close double quote.)

Sub DoubleQuotesSingleTopical()

Single quotes to double quotes
Place the cursor somewhere in the text between a pair of single quotes, run the macro, and it changes them to double

quotes. (It will beep at you if it can’t find either an open or a close single quote.)

The macro realises that an apostrophe-s (e.g. ‘the macro’s end’) is not actually a close quote, but what about an s-

apostrophe (s’)? That could be the close of the quotation. So if you see an apostrophe-s, all you have to do is select

some text (rather than just clicking in the text), and if the selection includes the apostrophe-s, the macro will know to

search for the close quote after the end of the selection. Neat?!

Sub SingleQuotesDoubleTopical()

Non-curly quotes
The following two macros will type single and double quotes respectively, at the current cursor position, but without

turning curly, i.e. ' and " – might y useful when editing program listings, such as all these macros!

Sub NonCurlyApostrophe()

Sub NonCurlyQuote()

If you also want ‘proper’ single and double primes characters – ′ and ″ – i.e. Unicode numbers 8242 and 8243 – the

best way to do that is to assign keystrokes to each of those characters using Insert–>Symbol–>Shortcut Key.

However, you might find that Word tries to be ‘helpful’ and changes the font of the prime to something other than the

font of the existing text. If so these macros will type them in your choice of font.

Sub SinglePrime()

Sub DoublePrime()

http://wordmacrotools.com/macros/P/PunctuationOffNearHere
http://wordmacrotools.com/macros/S/ScareQuoteAdd
http://wordmacrotools.com/macros/D/DoubleQuotesSingleTopical
http://wordmacrotools.com/macros/S/SingleQuotesDoubleTopical
http://wordmacrotools.com/macros/N/NonCurlyApostrophe
http://wordmacrotools.com/macros/N/NonCurlyQuote
http://wordmacrotools.com/macros/S/SinglePrime
http://wordmacrotools.com/macros/D/DoublePrime

Typing text into quotes for notes to publisher
(Difficult to know what heading to use!)

(Video: youtu.be/2hrfWRyDx18)

This is where I’m telling the publisher that I need changes making to the various figures, e.g.

4.6 – Change ‘Incident x-ray’ to ‘Incident X-ray’ (×2) .

4.10 – Change ‘100mm’ to ‘100 mm’ (×3) and ‘150mm’ to ‘150 mm’.

4.17 – Change ‘256x256’ to ‘256×256’ and ‘512x512’ to ‘512×512’ and ‘1024x1024’ to ‘1024×1024’.

My typing speed isn’t good, so I type into the quotes the text that needs changing, and then copy it to the ‘to’ text. All

very repetitive, so macros can help hugely:

I start with sets of blank lines such as:

4.5 – Change ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’.

4.10 – Change ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’.

4.15 – Change ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’.

4.20 – Change ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’ and ‘’ to ‘’.

and then copy the whole paragraph for the ‘nearest number’ item (e.g. for 4.17 I’d use 4.15), and use

NumberIncrement or NumberDecrement to get the right number.

Then I click MoveToNextQuote and type into the first pair of quotes.

Then QuoteCopier copies that same text into the next pair of quotes, i.e. after the word, ‘to’. And if there are several

of these same changes, I click TypeTimesX, which adds the ‘(×2)’, but it moves the cursor back to the number, ready

to use NumberIncrement to increase it, if necessary.

Then another click of MoveToNextQuote, and I deal with the next change needed for that figure.

Finally, when there are no more for that figure, I use DeleteSentenceAfterQuote to delete the rest of the sentence.

(If you watch the video, you’ll see how this speeds it all up – it sounds very laborious when you have to explain it like

this!)

Sub QuoteCopier()

Sub MoveToNextQuote()

Sub TypeTimesX()

Sub DeleteSentenceAfterQuote()

Transpose (swap) adjacent letters
(Video: youtu.be/P-6VdmT2BbE)

(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Place the cursor between the two characters to be transposed and run the macro – you don’t have to select anything.

Sub SwapCharacters()

Transpose the punctuation characters that follow
If you’ve got, say:

https://youtu.be/2hrfWRyDx18
http://wordmacrotools.com/macros/Q/QuoteCopier
http://wordmacrotools.com/macros/M/MoveToNextQuote
http://wordmacrotools.com/macros/T/TypeTimesX
http://wordmacrotools.com/macros/D/DeleteSentenceAfterQuote
https://youtu.be/P-6VdmT2BbE
https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/S/SwapCharacters

“Please follow me”, the waiter said.

and you want to switch the comma and the close quote, it’s fiddly to place the cursor between the two punctuation

marks, so this macro allows you to place the cursor somewhere to the left of the marks. It moves the cursor along the

line until it finds two non-space, non-alphabetic characters (e.g. ”,), and then swaps them.

Sub SwapPunctuation()

Transpose (swap) two previous letters
(Video: youtu.be/P-6VdmT2BbE)

Another macro, a slight variation of the one above, switches the two characters before the cursor. So, to correct ‘Pual’,

you would place the cursor after the ‘a’. and it would switch the ‘u’ and the ‘a’. So what’s the point of that?!

It can save hassle in one particular situation. Suppose you have ‘The force at this point, F2 is greater than...’, and you

want to add the missing comma after the ‘F2’. The trouble is, if you just type the comma after the subscript ‘2’, you

get ‘... point, F2, is ...’. Here it is, a bit bigger... ‘point, F2, is’ i.e. the comma is subscripted too.

So I type the comma one space to the right: ‘... point, F2 ,is ...’, and then run the SwapPreviousCharacters macro.

Sub SwapPreviousCharacters()

Transpose (swap) words
(Video: youtu.be/P-6VdmT2BbE)

(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Put the cursor either at the beginning of, or somewhere in middle of, the first word and run the macro.

By the way, it takes account of following punctuation: i.e.:

By the way, it takes account of punctuation following: i.e.:

– see what I mean! :-)

(This latest version doesn’t just swap the words, but it takes the formatting with it, e.g. “Water H2O is.” can be

swapped to “Water is H2O.”)

Sub SwapWords()

And while we’re swapping words around, see how long it takes you (using cut-and-paste, select and drag, or by

retyping) to change ‘too much effort and time’ into ‘too much time and effort’. Now just place the cursor anywhere in

the first word and try using this macro:

Sub SwapThreeWords()

Turn current word into a plural
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

This macro looks at the current word word and tries to make a viable plural out of it, i.e. add ‘s’ or ‘es’ or change ‘y’

to ‘ies’.

Sub Pluralise()

http://wordmacrotools.com/macros/S/SwapPunctuation
https://youtu.be/P-6VdmT2BbE
http://wordmacrotools.com/macros/S/SwapPreviousCharacters
https://youtu.be/P-6VdmT2BbE
https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/S/SwapWords
http://wordmacrotools.com/macros/S/SwapThreeWords
https://youtu.be/_ijsRqUR1fE
http://wordmacrotools.com/macros/P/Pluralise

Abbreviation swap
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A + https://youtu.be/0-HaDl2uBmQ)

This is for those occasions where the author will insist on writing things like

 a PH (pleckstrin homology) region

when what you want is

 a pleckstrin homology (PH) region

Simply place the cursor in ‘PH’ and run the macro.

It works the other way too: just put the cursor in ‘British’ and run the macro and it will change

 the British Broadcasting Corporation (BBC) challenges ...

into

 the BBC (British Broadcasting Corporation) challenges ...

If you have “pre-edited” documents that use tags of the form:

<termDef>space shuttle main engine</termDef> (<abbrev>SSME</abbrev>)

You’ll be pleased to hear that this macro has an option:

addPreEditCodes = True

This means that, at a stroke, you can change “SSME (space shuttle main engine)” into the form above – well, not with

the blue codes, but you could add those after you had finished by using a FRedit list:

<termDef>|^&

</termDef>|^&

<abbrev>|^&

</abbrev>|^&

Sub AbbrSwap()

Making common punctuation changes (1)
(Video: https://youtu.be/eSAlHMlRr8A)

After many years of using the punctuation change macros below, I realised that I could probably speed things up. So I

“watched myself working” and decided which changes I was doing most frequently. I put all those into one single

macro, instead of having to use a whole range of different macros.

I decided that comma <=> full stop was the most common, and then second was colon <=> semicolon, and finally I

thought it would be useful to add single <=> double quotes, even though that doesn’t need a case change for the

capital letter of the following word.

But also, I remembered that it was a nuisance if the following word was a proper noun, so you didn’t want to

lowercase it when switching to comma.

So here’s the logic of this macro:

It looks along the line for the first punctuation mark it can find (unlike the macros below, there’s no need to place the

cursor in the word immediately before the punctuation mark). Then the scheme of what it changes to what is as set out

in the first line of the macro:

https://youtu.be/FVt2ggFXf4A
https://youtu.be/0-HaDl2uBmQ
http://wordmacrotools.com/macros/A/AbbrSwap

mySwaps = ".|, ,|. ;|: :|; ?|! !|?"

As you can see, I also included ! <=> ?, although I may well not use it.

(What it doesn’t do is dashes, but I’ll look into adding that if someone asks.)

For capitalisation, when the macro changes a punctuation mark that might also need a case change [i.e. ,.;:], it

leaves the mark selected, and if you do want to change the capitalisation, then simply run the macro a second time.

Seeing that one of these marks [,.;:] is selected, it does the capitalisation change for you.

Because the mark zips along the line to the next mark, for swapping quotation marks, this means that you can

probably just press the shortcut key again and again, to do a series of swaps. And there’s no need to jump the cursor

past apostrophes because the macro automatically ignores them.

If you’re punctuating dialogue in fiction work and have issues with the quotation marks getting in the way, you can

change the second line of the macro to:

doQuoteSwap = False

But I’ve presented that as the second macro below:

Sub PunctuationSwap()

Sub PunctuationSwapInDialogue()

Change punctuation between words (2)
(Video: youtu.be/FVt2ggFXf4A and youtu.be/PB0hXA_1tRo)

(Fiction editors might like these macros.)

If you have a break between words using a comma, a colon, a semicolon etc or even a dash (spaced or unspaced), and

you want it to be a sentence break, simply place the cursor in the word before the break, and (with my key shortcut)

press Ctrl-Alt-<FullStop>. The macro removes the punctuation, adds a full point (period) and, if necessary, changes

the first letter of the next word to uppercase.

Similarly, if you want the words to be separated by a comma (or a colon, or a semicolon or a dash, or a question mark

or an exclamation mark) use the appropriate macro linked to a suitable keystroke – in my case Ctrl-Alt-, or Ctrl-Alt-:

(i.e. Ctrl-Alt-Shift-;) or Ctrl-Alt-; or Ctrl-Alt-= or Ctrl-Alt-? or Ctrl-Alt-!.

It now also copes if there’s an open quote in the way. So it changes

 he said, “you know...

into

 he said. “You know...

or into

 he said: “you know...

or whatever.

And I decided that for some jobs, you might like to follow a colon with an uppercase character, not a lowercase one,

so the Colon macro has the option at the beginning: useUppercase = False which you can change to True if

you want uppercase.

http://wordmacrotools.com/macros/P/PunctuationSwap
http://wordmacrotools.com/macros/P/PunctuationSwapInDialogue
https://youtu.be/FVt2ggFXf4A
https://youtu.be/PB0hXA_1tRo

The only macro that needs any further explanation is the Dash macro, which is currently set up for a spaced en dash. If

you want it to give you an unspaced em dash, change the text in the first lines of the macro:

' Spaced en dash

' newBit = " " & ChrW(8211) & " "

' OR Unspaced em dash

newBit = ChrW(8212)

Either that or you can have two separate macros, one for each. I don’t bother as I use unspaced em dashes so rarely.

STOP PRESS: Someone pointed out that it would be helpful if the Comma macro also performed the function of

CommaAdd, i.e. if there is no punctuation at all after a word, the Comma now adds a comma.

STOP PRESS 2: And now all the other macros in this set do exactly the same

STOP PRESS 3: Someone pointed out that if you want to change to a comma (or a semicolon or a colon) in, say:

 he said. “Paul knows...

or something like:

 it ends. America now...

then you don’t want to lowercase the next character. Sorted! In such a case, don’t just click in ‘said’ or ‘ends’, but

rather double-click it. The macro first then checks to see if any text is selected and, if it is, it does not change the case

of the next word.

STOP PRESS 4: Someone wanted FullPoint to also delete a conjunction, i.e. make this change:

 ...end of this sentence and the beginning of the next...

into

 ...end of this sentence. The beginning of the next...

So with the latest version of FullPoint, if you double-click the conjunction, to select it, the macro will then delete it

and then make it a sentence break.

Sub FullPoint()

Sub Period()

Sub Comma()

Sub Semicolon()

Sub Colon()

Sub Dash()

Sub EmDashUnspaced()

Sub QuestionMark()

Sub ExclamationMark()

http://wordmacrotools.com/macros/F/FullPoint
http://wordmacrotools.com/macros/P/Period
http://wordmacrotools.com/macros/C/Comma
http://wordmacrotools.com/macros/S/Semicolon
http://wordmacrotools.com/macros/C/Colon
http://wordmacrotools.com/macros/D/Dash
http://wordmacrotools.com/macros/E/EmDashUnspaced
http://wordmacrotools.com/macros/Q/QuestionMark
http://wordmacrotools.com/macros/E/ExclamationMark

Change punctuation between words in dialogue
(Video: youtu.be/PB0hXA_1tRo)

(Fiction editors might like this macro.)

You might want to change the punctuation between words, as above, but in a dialogue, so you want to preserve the

quotation mark:

“Blah, blah.” He said.

to

“Blah, blah,” he said.

In which case the following pair of macros will give you the full point (period) and the comma.

These macros have one extra feature over the previous set of macros. If you just put the cursor somewhere in the word

before the punctuation mark, then they work as normal, changing the punctuation mark and, if necessary, correcting

the case of the initial letter of the following word. However, if you actually select some or all of the previous word

(e.g. just double-click it), it does not change the case of the following word. This would be useful for, say:

“Blah, blah.” John said.

if you want to change to a comma.

If you also want macros for exclamation mark and question mark, just create a new macro based on

FullPointInDialogue (PeriodInDialogue) and change the line newBit = ". " to newBit = "! " or "? ".

If you also want macros for colon, and semicolon, just create a new macro based on CommaInDialogue and change

the line newBit = ", " to newBit = ": " or "; ".

Sub FullPointInDialogue()

Sub PeriodInDialogue()

Sub CommaInDialogue()

Changes proper noun to personal pronoun
(Video: youtu.be/PB0hXA_1tRo)

This macro changes proper nouns to a personal pronouns (John −> he, Jane −> she), but it is used selectively. When

you run it, it looks along the line to find the next proper noun, deletes it and types ‘she’. But if you then type Ctrl-Z, it

changes to ‘he’.

That’s the way it works if the macro is set to sheHasPriority = True, but if you change that to False then it

types ‘he’, and if you do a Ctrl-Z, it turns to ‘she’.

This is nothing to do with sexism; if your story has mainly male characters or mainly female characters, you can

decide which way round you want to work it: ‘he’ or ‘she’ first.

Sub ProperToPronoun()

Numbers (figures) to text
(Video: youtu.be/FVt2ggFXf4A)

https://youtu.be/PB0hXA_1tRo
http://wordmacrotools.com/macros/F/FullPointInDialogue
http://wordmacrotools.com/macros/F/PeriodInDialogue
http://wordmacrotools.com/macros/C/CommaInDialogue
https://youtu.be/PB0hXA_1tRo
http://wordmacrotools.com/macros/P/ProperToPronoun
https://youtu.be/FVt2ggFXf4A

If your text occasionally uses numerals 1 to 9 instead of words ‘one’ to ‘nine’ (or ‘57’ for ‘fifty-seven’, for that

matter!), just place the cursor somewhere on the line in front of one of these rogue numerals and run the macro. Each

time you run it, it jumps to the next group of numerals and changes the number to text, so – click, click, click, and

three consecutive numbers are changed into text, just like that!

N.B. If you use this for three-digit numbers or more, note that it uses US wording, so ‘385’ becomes ‘three hundred

eighty-five’, and not ‘three hundred and eighty-five’. (But there’s a UK version below.)

And there’s a version that some of the US folks wanted, which takes account of spaces, commas and hard spaces

being in the number – e.g. it will correctly change 23,456 or 45 678 into words.

Basic version

Sub NumberToText()

Version that copes with commas and spaces

Sub NumberToText2()

The versions above are the US-based macro, in that for ‘123456’ you get ‘one hundred twenty-three thousand four

hundred fifty-six’, and not ‘one hundred and twenty-three thousand, four hundred and fifty-six’ (i.e. it doesn’t give

you the ‘and’s or the comma).

So the two macros below are UK versions.

Sub NumberToTextUK()

Sub NumberToTextUK2()

CMOS doesn’t like “one thousand four hundred”, but rather “fourteen hundred”. This version does that.

Sub NumberToTextCMOS()

There is now a German equivalent. It is a simple macro that will work only for the numbers 1 to 12, but you can

probably work out how to make it work for bigger numbers, although the job is a bit laborious, depending how far you

want to go. (The other macro, remember, work for up to 6 digit numbers.)

Sub ZifferWort()

The above macro is now redundant! I suddenly realised that I could use MultiSwitch to determine whether 1, 2, 3 etc

were changed to one, two, three etc, or eins, zwei, drei, etc or un, deux, trois, etc. So the new macro looks along the

line until finds a one- or two-digit number, and then jumps into MultiSwitch.

So in your zzSwitchList you add a list of numbers:

1

eins

2

zwei

3

drei

4

vier

http://wordmacrotools.com/macros/N/NumberToText
http://wordmacrotools.com/macros/N/NumberToText2
http://wordmacrotools.com/macros/N/NumberToTextUK
http://wordmacrotools.com/macros/N/NumberToTextUK2
http://wordmacrotools.com/macros/N/NumberToTextCMOS
http://wordmacrotools.com/macros/Z/ZifferWort

5

fünf

etc.

or maybe

1

un

2

deux

3

trois

4

quatre

etc

And all it would take to change languages would be to move one of these strings of alternates up to the top of your

zzSwitchList.

Sub NumberToTextMultiSwitch()

Convert numbers (text) to figures (1–10)
This is for number ‘one’ to ‘nine’ (or optionally ‘ten’) to figures ‘1’ to ‘9’ (or ‘10’). It searches through the text until it

finds the number and types it as a figure instead. (Use Ctrl-Z if you change your mind.)

Sub NumberToFigure()

Convert the next number (text) to figures (1–999)
This looks along the line for the next word that looks like part of a number and converts it to figures.

Sub TextToNumber()

Adjust numbering – increment and decrement
(Video: youtu.be/AYgsFmFA7gU)

I had a 100,000-word book with 500 notes, and the notes were hard-wired, i.e. not automatically numbered. At the last

minute, the author said, ‘Can you just [just?!] delete notes 24 and 29, please?’

Fun, eh?! No worries I wrote on paper what changes were needed:

1−>23 OK

delete note 24

25 −> 28 decrease by 1

delete note 29

30 −> decrease by 2

http://wordmacrotools.com/macros/N/NumberToTextMultiSwitch
http://wordmacrotools.com/macros/N/NumberToFigure
http://wordmacrotools.com/macros/T/TextToNumber
https://youtu.be/AYgsFmFA7gU

I have the two macros below (I put them on F2 and F3); each jumps forwards along the line to the next number and

increments (or decrements) it. So if I see 26 coming up, I click F2 once, and that makes it 25, but if it’s 32, I click F2

twice, and it becomes 30.

They also work with dates: click in 1978 and click F3 and it becomes 1979.

In fact, it works from the cursor onwards, so if I’ve got a ‘funny’ number like ‘0084’, if I put the cursor just before the

‘8’, and click F3, I get ‘0085’. But if I just clicked anywhere in front of it, the ‘0084’ would become just ‘85’.

Also, if you just have a numbered list:

1) Blah one

2) Blah again

3) Blah another

4) Blah last

5) Blah-de-blah

and you need to add or remove an item and hence have to do some renumbering, then these macros will speed up the

renumbering.

But then maybe you’re correcting numbers which need a bigger jump. No worries. At the beginning of the

NumberIncrement (NumberDecrement) macro is a line saying:

jump = 1

(jump = -1)

If you need to change by 4, say, then you can change it to 4 (−4).

Suppose you need to renumber figure numbers, or equation numbers, say in chapter 14. OK, then search for ‘14.’ so

that you can then alternately run FindFwd (which jumps forward to the next find, i.e. the next ‘14.’) and then press F3

(assuming it’s an increment you want).

However, if you have a lot of these to do (and this feature was added when I found a pair of repeated equation

numbers near the beginning of a chapter of over 100 equations plus 60+ citations!), you can change a line at the

beginning of the macro that currently says:

goNext = False

from False to True. Then every time you press F3, it increments the number and jumps to the next find.

The downside of this is that you’ll forget to change it back to False, when you finish. Then, next time you try to use

the NumberIncrement macro, the number is decremented, but the cursor flies off to somewhere else in the text!

If your memory is bad, like mine, you could instead create a macro:

Sub IncJump()

 Call NumberIncrement

 Call FindFwd

End Sub

Sub NumberIncrement()

Sub NumberDecrement()

http://wordmacrotools.com/macros/I/IncJump
http://wordmacrotools.com/macros/N/NumberIncrement
http://wordmacrotools.com/macros/N/NumberDecrement

Adjust lettering – increment and decrement
Extending the idea of the previous macro, if you had a lettered list:

a) Blah one

b) Blah again

d) Blah another

e) Blah last

f) Blah-de-blah

and you wanted to add an extra item after (a), you’d need to ‘renumber’ (b) to (e). Put the cursor in front of each in

turn and run LetterIncrement. (Similarly if you want to delete an item.)

Another use: If you have a Greek letter, and you want to change it, you can use these two macros to move up and

down through the alphabet, rather than re-entering the Greek characters from scratch. (It only works if you know your

Greek alphabet, of course!)

Sub LetterIncrement()

Sub LetterDecrement()

Change ampersand to and
Following the same sort of theme as converting numbers to text, if you see an ampersand (‘&’) coming up, just run

this macro and it will jump to the ‘&’ and change it to ‘and’. My keystroke for this is easy to remember: Ctrl-Alt-

Shift-&.

(This facility is also covered by CharacterSwitch, but the advantage of having a separate macro is that the cursor can

be placed in any word in front of the symbol. For CharacterSwitch, you have to place the cursor exactly in front of the

symbol.)

Sub Ampersand()

Change percent symbol to words
In exactly the same vein, if you see a percent symbol (‘%’) coming up, just run this macro and it will jump to the ‘%’

and change it to ‘ per cent’. My keystroke for this is yes, you’ve guessed it: Ctrl-Alt-Shift-%.

And, of course, if you’re working on a US-spelling document, rather than UK one, it uses ‘percent’ rather than ‘per

cent’.

(This facility is also covered by CharacterSwitch, but the advantage of having a separate macro is that the cursor can

be placed in any word in front of the symbol. For CharacterSwitch, you have to place the cursor exactly in front of the

symbol.)

Sub PerCent()

Change ‘to do’ into ‘for doing’ – and vice versa
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

(This macro also(!) gets a mention in video: youtu.be/mVBJ1jjQwdk and https://youtu.be/v3pievIohh4)

Yesterday it was a Spanish author, and today it’s Chinese, and on both of them, I was for ever having to change, say,

‘to place’ or ‘places’ into ‘for placing’, or ‘for picking’ or ‘to pick’, so this now automated to an extent.

http://wordmacrotools.com/macros/L/LetterIncrement
http://wordmacrotools.com/macros/L/LetterDecrement
http://wordmacrotools.com/macros/A/Ampersand
http://wordmacrotools.com/macros/P/PerCent
https://youtu.be/_ijsRqUR1fE
https://youtu.be/mVBJ1jjQwdk

1) Click in the verb, and it will do its best to switch between do/doing, changing/change, etc.

2) Click in the preposition, and of/for will be changed to ‘to’. If it’s ‘to’ the if you double-click it before running the

macro, you’ll get ‘for’, but if it’s not selected, you’ll get ‘of’.

It will cope with some words with nn, rr, ll, tt, pp, but don’t expect it to handle hop/hope/hoping/hopping!

Sub VerbChanger()

Change ‘filling’ into ‘filled’ – and vice versa
This is similar to the previous macro, but it tries to convert between present and past participles – not an easy task in

English as there are so many different ways of doing it, spelling-wise. If you use it, you’ll get used to what works and

what doesn’t, hopefully. Plus you can actually add to the list of spelling variants listed in the macros.

Click in the participle, and it will do its best to switch to the alternate participle.

The list of changes looks like this, and you can perhaps add to it:

 Case "ed": Selection.TypeText "ing"

 Case "lt": Selection.TypeText "lling"

 Case "nt": Selection.TypeText "ning"

 Case "an": Selection.TypeText "inning"

 Case "un": Selection.TypeText "inning"

Thinking about it, I’m wondering if there are just too many words it will get wrong, but have a play and let me know

what you think!

On the upside, when it has made its attempt to change the participle it spellchecks the result and beeps if it has created

a spelling error.

Sub ParticipleChanger()

Change future tense into present perfect (Dutch)
(Video: https://youtu.be/L3wBj6PcTZs)

This macro was requested by Dutch colleagues, who wanted to be able to change the future tense to the present

perfect.

I don’t speak Dutch (despite having visited the Netherlands 20+ times in the past 30 years) but my colleagues gave me

a list of words that had to be changed and I delivered two macros: one works just in the current sentence (just click

somewhere within the sentence) and the other goes through the whole document.

It works with two verbs, worden and zijn. Here are some examples:

Verb = worden

Before: Het uiteindelijke rapport zal in papier overhandigd worden aan de opdrachtgevers.

After: Het uiteindelijke rapport wordt in papier overhandigd aan de opdrachtgevers.

Before: Dan zal er informatie worden verworven.

After: Dan wordt er informatie verworven.

Before: Daarnaast zullen door middel van deze interviews de visies van de (expert)wijkagenten ten aanzien van

bestuursrechtelijke maatregelen in kaart gebracht worden.

http://wordmacrotools.com/macros/V/VerbChanger
http://wordmacrotools.com/macros/P/ParticipleChanger

After: Daarnaast worden door middel van deze interviews de visie van de (expert)wijkagenten ten aanzien van

bestuursrechtelijke maatregelen in kaart gebracht.

Verb = zijn

Before: Indien de burger namelijk last heeft van bepaalde (criminele) gedragingen door bijvoorbeeld overlast, zal de

drempel om dit te melden bij de wijkagent lager zijn in het geval van een goede vertrouwensband tussen burger en

wijkagent.

After: Indien de burger namelijk last heeft van bepaalde (criminele) gedragingen door bijvoorbeeld overlast, is de

drempel om dit te melden bij de wijkagent lager in het geval van een goede vertrouwensband tussen burger en

wijkagent.

Before: Wanneer de resultaten zullen zijn verworven.

After: Wanneer de resultaten zijn verworven.

Sub VerbChangerNL()

Sub VerbChangerNLglobal()

Single/double curly quote
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

I’ve revamped the SingleQuote (and DoubleQuote) macro so that you can use the same macro to change any old

quotation mark into a single (double) curly quote.

So, SingleQuote now looks along the line from the cursor to the first quote it can find and turns it into a curly single

quote. When I say ‘quote’, it can be single, double, open or closed, curly or non-curly, or even the funny German(?)

open quotes ‘„’ and ‘‚’ (it might look like a comma, but it’s not, honest!) or the French «, », ‹ and ›. However, it

checks the context to work out whether it should replace it with an open or a closed quote.

So, if there’s more than one consecutive quote that needs to become single and curly, it’s just click, click, click

(however many there are).

And similarly, obviously, for double quote. So all you have to remember is, say, Ctrl-Alt-Shift-' forces the next quote

along the line to a single, and Ctrl-Alt-Shift-" forces the upcoming quote to a double quote.

But the DoubleQuote has another trick up its sleeve: it checks to see whether the ‘quote’ that it has found is in fact an

apostrophe, in which case it ignores it and moves on to find the next quote mark. So, if you have

 ‘OK, I’m ready if you’re ready.’

it would, after just two clicks of the macro, become

 “OK, I’m ready if you’re ready.”

because it skips past the two apostrophes.

Sub PunctuationToSingleQuote()

Sub PunctuationToDoubleQuote()

Apostrophe
This is for things like ’phone and ’80s.

Sub PunctuationToApostrophe()

http://wordmacrotools.com/macros/V/VerbChangerNL
http://wordmacrotools.com/macros/V/VerbChangerNLglobal
https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/P/PunctuationToSingleQuote
http://wordmacrotools.com/macros/P/PunctuationToDoubleQuote
http://wordmacrotools.com/macros/P/PunctuationToApostrophe

Switch UK curly quotes on and off
If you sometimes need to have curly quotes on, and sometimes prefer to use non-curly quotes, this macros switches

the facility on and off.

Sub CurlyQuotesToggle()

Single/double curly German-style quote
(Video: https://youtu.be/L3wBj6PcTZs)

As the title says! i.e. „Hello there!“ and ‚Hello there!‘

(I’ve tried to get the correct open/close quote in a range of different punctuation situations, but if it puts in the wrong

sense of quotation mark, or if it beeps at you and does nothing, please send me a sample of text where it goes wrong.

Thanks.)

Sub PunctuationToDoubleQuoteDE()

Sub PunctuationToSingleQuoteDE()

Single/double curly French-style quote
(Video: https://youtu.be/L3wBj6PcTZs)

As the title says! i.e. «Hello there!» and ‹Hello there!›

(I’ve tried to get the correct open/close quote in a range of different punctuation situations, but if it puts in the wrong

sense of quotation mark, or if it beeps at you and does nothing, please send me a sample of text where it goes wrong.

Thanks.)

Sub PunctuationToDoubleQuoteFR()

Sub PunctuationToSingleQuoteFR()

Or you might prefer to have separate specific macros for the open and close for each of single and double quotes.

Sub PunctuationToDoubleOpenGuillemet()

Sub PunctuationToDoubleCloseGuillemet()

Sub PunctuationToSingleOpenGuillemet()

Sub PunctuationToSingleCloseGuillemet()

Single/double prime
Ditto for single (double) prime.

Sub PunctuationToSinglePrime()

http://wordmacrotools.com/macros/C/CurlyQuotesToggle
http://wordmacrotools.com/macros/P/PunctuationToDoubleQuoteDE
http://wordmacrotools.com/macros/P/PunctuationToSingleQuoteDE
http://wordmacrotools.com/macros/P/PunctuationToDoubleQuoteFR
http://wordmacrotools.com/macros/P/PunctuationToSingleQuoteFR
http://wordmacrotools.com/macros/P/PunctuationToDoubleOpenGuillemet
http://wordmacrotools.com/macros/P/PunctuationToDoubleCloseGuillemet
http://wordmacrotools.com/macros/P/PunctuationToSingleOpenGuillemet
http://wordmacrotools.com/macros/P/PunctuationToSingleCloseGuillemet
http://wordmacrotools.com/macros/P/PunctuationToSinglePrime

PunctuationToDoublePrime()

Letter ‘x’ to times/multiply character
Ditto for multiply character.

Sub PunctuationToMultiplySign()

Next space to hard (non-breaking/fixed) space
Ditto for hard (non-breaking/fixed) space.

Sub PunctuationToHardSpace()

Change double quotes to guillemets
This provides a global change for double quotes to guillemets. Although the macro just consists of four F&Rs

(open/close double quotes with and without a rogue space), you can’t just put them in a FRedit list because the auto

smart quotes has to be off, or it won’t work. However, if you want this in a FRedit list, you can just use:

DoMacro|QuotesToGuillemets

Sub QuotesToGuillemets()

Add quotes to a phrase
(These macros get a mention in video: https://youtu.be/_ijsRqUR1fE + https://youtu.be/0-HaDl2uBmQ)

To add quotes to a phrase, click somewhere in the first word, shift-click somewhere in the final word, and run the

macro. It will find the beginning of the first word, add the open quote, find the final word, sort out if the final

character is a space and type in the close quote accordingly. To add quotes round a word, just click somewhere in the

word.

Sub QuotesAddDouble()

Sub QuotesAddSingle()

Add parentheses round the current word/phrase
(This macro gets a mention in video: https://youtu.be/_ijsRqUR1fE + https://youtu.be/0-HaDl2uBmQ)

This macro adds parentheses round the current word or phrase. Just click somewhere in the word and run the macro.

Or for a phrase, select roughly from somewhere in the first word to somewhere in the final word, e.g. “I want to

parenthesise this phrase, please.” would give: “I want to (parenthesise this phrase), please.”

You could make customised versions of this macro (N.B. with (slightly) different names) by changing the two lines:

Selection.TypeText Text:=")"

and

Selection.TypeText Text:="("

http://wordmacrotools.com/macros/P/PunctuationToDoublePrime
http://wordmacrotools.com/macros/P/PunctuationToMultiplySign
http://wordmacrotools.com/macros/P/PunctuationToHardSpace
http://wordmacrotools.com/macros/Q/QuotesToGuillemets
https://youtu.be/_ijsRqUR1fE
https://youtu.be/0-HaDl2uBmQ
http://wordmacrotools.com/macros/Q/QuotesAddDouble
http://wordmacrotools.com/macros/Q/QuotesAddSingle
https://youtu.be/_ijsRqUR1fE
https://youtu.be/0-HaDl2uBmQ

So you could add, instead, say angle brackets ">" and "<". (Note that it types in the close item first, then the open

item.) You could even add, say, tags "<\code>" and "<code>".

Sub ParenthesesAdd()

Add ‘things’ round the current word/phrase
This is an expanded version of the previous macro: not only does it add your specified punctuation/tags etc, but it can

also delete specified punctuation that might already be there. It’s up to you to decide exactly which punctuation marks

you want deleting, and obviously, you can make multiple copies of the macro (N.B. with (slightly) different names),

each set up so that it adds different ‘things’ rounds the text and deletes a different set of punctuation marks (or not).

This is set up with:

deleteThese = "()[].,"

' And the various quotation marks

deleteThese = deleteThese & """'" & ChrW(8220) & ChrW(8221) & ChrW(8216) &

ChrW(8217)

Just click somewhere in the word and run the macro. Or for a phrase, select roughly from somewhere in the first word

to somewhere in the final word, e.g. “I want to parenthesise this phrase, please.” would give: “I want to (parenthesise

this phrase), please.”

Sub AddTextRoundText()

Delete pairs of parentheses, quote marks or commas
(This macro gets a mention in video: https://youtu.be/0-HaDl2uBmQ)

This macro was born when I had a document with lots of pairs of parentheses that I had to delete, but it has grown into

a macro that can delete pairs of all sorts of characters. Specifically, it looks for and deletes [], {}, <>, (), “”, ‘’ or even

pairs of parenthetical commas!

So how does the macro know what to look for? For a start you give it a clue what to do by placing the cursor a few

characters in front of the first of the pair (where ‘few’ is defined by numChars = 20 at the beginning of the macro).

The macro looks for the above special characters in the order specified in the macro (which you can change, if you

wish). So if it can’t find [, it looks for {, then for <, etc.

This is useful because, if you have a lot of pairs to delete, you can probably arrange things so that you can just keep

running macro by clicking the keystroke, without having to reposition the cursor. So, for example, I’ve placed the

comma at the end of the priority list so that if the text has, say, parentheses in it, it will delete those, rather than the

commas. For some applications, you might need to extend the ‘range’ of the macro by setting, say, numChars = 50

or whatever.

If it can’t find a matching pair for the open-whatever-character it’s looking for, it beeps at you. The range over which

it looks for the match is set by numWords = 50 at the beginning of the macro.

Sub ParenthesesEtcPairDelete()

Change quotes on a phrase – double to single
This macro allows you to choose a specific phrase, and changes the curly quotes on this phrase from double to single.

Sub DoubleQuotesToSingle()

http://wordmacrotools.com/macros/P/ParenthesesAdd
http://wordmacrotools.com/macros/A/AddTextRoundText
https://youtu.be/0-HaDl2uBmQ
http://wordmacrotools.com/macros/P/ParenthesesEtcPairDelete
http://wordmacrotools.com/macros/D/DoubleQuotesToSingle

Add a comma
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

(Video of CommaAddPrevious: youtu.be/AqREu_iJ2Yg)

As I often find myself adding commas, I have a macro so that I just put the cursor somewhere in the word and run the

macro. This then jumps to the end of the word and adds said comma.

I’ve recently made it a bit more intelligent. If the word is in italic or bold, it types in the comma but then checks the

following word to see if it too is in italic/bold. If it’s not then it goes back and makes the comma roman.

(That said, working for a client in Spain, their convention was that the punctuation should keep the same format as the

word it follows, as I’ve just illustrated. So I’ve added an option at the beginning of the macro.)

Sub CommaAdd()

Someone asked if it would be possible to add a comma outside the close quote marks on UK files and inside the quote

marks on US files. Here it is:

Sub CommaAddUSUK()

And this version is useful if you’re doing something like finding all the ‘and’s and checking to see if you ought to add

a comma before it. So search for ‘and’ and the next, and the next. Then, if one of them needs a comma adding before

it, just run this macro instead of having to move back a word and then using the ordinary CommAdd.

Sub CommaAddPrevious()

Hyphen to dash
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

This assumes that two words (or numbers) have a hyphen between them, and it should be a dash, e.g. ‘take the

London-Manchester road’ or ‘in 30-60 minutes’ time’. Just put the cursor in the word before it, and run the macro.

The macro is currently set for an en dash, but if you want in em dash, you use the other macro.

Or if it just says ‘take the London Manchester road’, as long as you place the cursor in ‘London’, it will find the next

space and make that a dash.

(PPS: I’ve also now added a space into the search pattern, so one press and you get an em dash between the two

words, and two presses and it’s an en dash – or vice versa if you change the priority at the beginning of the macro.

Then then third press will give you a hyphen, although PunctuationToHyphen goes straight to a hyphen.)

Sub PunctuationToEmDash()

Sub PunctuationToEnDash()

And for a non-breaking dash (em or en)...

Sub PunctuationToNonBreakingEmDash()

Sub PunctuationToNonBreakingEnDash()

https://youtu.be/FVt2ggFXf4A
https://youtu.be/AqREu_iJ2Yg
http://wordmacrotools.com/macros/C/CommaAdd
http://wordmacrotools.com/macros/C/CommaAddUSUK
http://wordmacrotools.com/macros/C/CommaAddPrevious
https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/P/PunctuationToEmDash
http://wordmacrotools.com/macros/P/PunctuationToEnDash
http://wordmacrotools.com/macros/P/PunctuationToNonBreakingEmDash
http://wordmacrotools.com/macros/P/PunctuationToNonBreakingEnDash

Punctuation to comma

Similar to the macro above but it changes the next punctuation mark to a comma.

Sub PunctuationToComma()

Punctuation to full point (period)

Similar to the macro above but it changes the next punctuation mark to a full point (period).

Sub PunctuationToFullPoint()

Hyphen to minus sign
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

Similar to the macro above but it changes the next ‘hyphen-like character’ to a proper Unicode minus sign.

Sub PunctuationToMinus()

Hyphen/dash/hard space to space
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

This is used where two words (or numbers) have a hyphen/dash/hard space between them, and it should be a space,

e.g. ‘a finely-tuned argument’. Just put the cursor somewhere before it, on that line, and run the macro.

Sub PunctuationToSpace()

Dash or (hard) space to hyphen
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

This is used where two words (or numbers) have a dash/hard space/space between them, and it should be a hyphen,

e.g. ‘a well tuned viola’. Just put the cursor somewhere in ‘well’, and run the macro.

Sub PunctuationToHyphen()

Punctuation to hard space
This jumps to the next space, hyphen, dash etc and turns it into a hard (non-breaking) space. One options is whether to

track the change or not:

trackIt = False

Sub PunctuationToHardSpace()

http://wordmacrotools.com/macros/P/PunctuationToComma
http://wordmacrotools.com/macros/P/PunctuationToFullPoint
https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/P/PunctuationToMinus
https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/P/PunctuationToSpace
https://youtu.be/_ijsRqUR1fE
http://wordmacrotools.com/macros/P/PunctuationToHyphen
http://wordmacrotools.com/macros/P/PunctuationToHardSpace

Punctuation to thin space
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

This jumps to the next space, hyphen, dash etc and turns it into a thin space. Three options are (a) whether to track the

change and (b) whether to highlight the space in light grey, and (c) whether to ensure that the space is not super or

subscript.

trackIt = False

makeItGrey = True

makeNotSubSuper = True

Sub PunctuationToThinSpace()

Type a thin space
(This macro gets a mention in video: youtu.be/FVt2ggFXf4A)

A companion to the previous macro, this, er, types a thin space at the cursor – but it has the same three options.

Sub TypeThinSpace()

Delete next punctuation mark
On a job I did recently the references lists have loads of excess punctuation, so I decided that it would be useful to

have a macro that runs along the line to the next punctuation mark and deletes it.

So that’s for just deleting a punctuation mark, but I can then, of course, type in a replacement punctuation mark if

necessary.

For me, this means that I don’t have to use the mouse to do the intricate selection of one tiny punctuation mark.

Anyone suffering RSI from excess mousing will understand why I prefer instead to use just one easy keystroke (I use

Alt-Backspace).

Sub PunctuationOff()

Punctuation inversion
If you often find yourself switching, say ‘.)’ into ‘).’ or perhaps ‘,'’ into ‘',’ then this will save you time. It searches

from the cursor onwards to find any pair of punctuation marks from a whole list (currently it’s: ;:.,!? ’ ‘ “ ” ' ")(][}{,

but you can add others) and then inverts the order. That’s all there is to it.

Sub PunctuationSwitcher()

Join two words
If you have two words that are hyphenated or just have a space between them, and you want it to be a single word,

then place the cursor in the first word, and this macro will do it for you – e.g. to change ‘on-going’ or ‘on going’ into

‘ongoing’.

It has two options.

1) If it feels more intuitive to you to put the cursor in the second word, ‘going’, and ‘push this word backwards’ into

the previous one, then use: joinToPrevious = False.

https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/P/PunctuationToThinSpace
https://youtu.be/FVt2ggFXf4A
http://wordmacrotools.com/macros/T/TypeThinSpace
http://wordmacrotools.com/macros/P/PunctuationOff
http://wordmacrotools.com/macros/P/PunctuationSwitcher

2) German users may also like to lowercase the initial letter of the second word. If so, set: forceLowercase =

True.

Sub JoinTwoWords()

Word pair (un)hyphenated or single word
This macro takes a word pair that is either two words or hyphenated, and cycles through: two words −> hyphenated

−> one word −> two words etc. Each time you run the macro, it takes one step through the cycle – but it can’t, of

course, start from a single word as it wouldn’t know where to split it!

If you’d prefer it to cycle the opposite way around: hyphenated −> two words −> one word −> hyphenated etc, it has

an option at the beginning of the macro: reverseOrder = True.

Sub WordPairPunctuate()

Change or add ‘that’ and ‘which’
(N.B. the following macro makes this one redundant – it does what this does, and a lot more.)

How many times a day do I add ‘that’ into a sentence to aid its understandability?! Now all I do is place the cursor in

the middle of the previous word and press (in my case) Ctrl-Alt-t. However, this macro is rather more intelligent than

that.

(a) If (as per the previous paragraph) it finds itself in the middle of a word that is not ‘that’ and not ‘which’ then it

adds ‘that’ after the current word.

(b) If it finds itself in the middle of the word ‘which’, it deletes it and replaces it with ‘that’.

(c) If it finds itself in the middle of the word ‘that’, it deletes it and replaces it with ‘which’.

If, out of habit, you find that you have already double-clicked on your ‘that’ or ‘which’, ready to replace it, don’t

worry, just run the macro, and it will perform as specified above.

Sub ThatWhich()

Common word/phrase switch
New intro video: https://youtu.be/v3pievIohh4

Main video: youtu.be/NuwIVuJwW1g, Hints & Tips: https://youtu.be/K7xfLbh26oE

This macro gets a mention in video: youtu.be/FVt2ggFXf4A

(Late addition to the macro: suppose you want to change the item in the list which you’ve just searched for. You will

find that the macro has loaded Word’s search function with that word/phrase, so you can use Word’s Find function –

or the FindFwd macro – to jump to that word/phrase in the list.)

(N.B. Please read right through these instructions, because the macro has a huge range of different facilities bundled

into it, and I wouldn’t want you to miss its full potential – the video only shows the basic use of the macro.)

MultiSwitch can be thought of as a selective version of FRedit, i.e. you have a list of pairs of words/phrases, where

you want the first to be changed to the second, but not globally: it only changes the text at the cursor. Run

MultiSwitch once to make one change. Run the macro again, somewhere, to make another change.

As with FRedit, you have to have a list open when you run the macro. If not, it will prompt you to open it.

http://wordmacrotools.com/macros/J/JoinTwoWords
http://wordmacrotools.com/macros/W/WordPairPunctuate
http://wordmacrotools.com/macros/T/ThatWhich
https://youtu.be/NuwIVuJwW1g
https://youtu.be/FVt2ggFXf4A

If it’s a pain having to remember to load it, then you can add a line at the beginning of the macro to load it for you

automatically, something like this:

Documents.Open FileName:= "C:\Documents and Settings\Paul\My

Documents\zzSwitchList.docx"

or on a Mac:

Documents.Open FileName:= "/Users/Paul/My Documents/Macro

stuff/zzSwitchList.docx"

The address in each case has, of course, to be the address where you have stored your zzSwitchList.

Here’s an example list (I call it the switch list), but the macro itself contains no data – you are the person who sets

what is to be changed into what:

that

which

which

that

like

such as

Like

As with

Due to

Owing to

as a result

because

at this point in time

now

England

the UK

Holland

the Netherlands

continuously

continually

continually

continuously

in conjunction with

with

Since

Because

Therefore

So

dimorphic-tribenzene

dimorfic tri-benzene

dt

dimorfic tri-benzene

precholier

préchôlièr

etc, etc.

You are reading through your text and you decide that a change is needed, so you simply place the cursor somewhere

in that word (or in the first word, if it’s a phrase) and run the macro. It looks through your switch list, finds the given

word/phrase, and changes it into the alternate word/phrase.

(For me, part of the value of this macro is that, while it is making that change, my concentration remains on the

meaning and flow of the sentence. Looked at it the other way round, if I were making the change by hand, while still

thinking of the meaning of the sentence, I might well mistype the alternate text.)

The final three items in the above list are spoof entries, just to show that it can be useful for (a) scientific and/or

foreign language applications and (b) as an abbreviation expander and (c) applying accents.

The macro also has the facility (should you want it) to offer a group of alternative replacement texts. So, you might

have an entry in the list, say:

as a result of

due to

owing to

because of

So, if you click in the text on the ‘as’ of ‘as a result of’, the macro offers you an on-screen menu:

1: due to

2: owing to

3: because of

and you can type in the number of the item you want. (One application of this is where the client wants you to avoid

certain ‘stock phrases’, but then again, you don’t want to replace it with the same alternative wording every single

time.)

Then suppose you’ve got an item:

last

past

final

previous

If you use this, you will see that the default value that the macro gives you is ‘1’. So running the macro and then just

pressing Enter will give you ‘past’. The macro is also set up so that if you double-click on ‘last’ before running the

macro, it doesn’t even bother displaying the menu at all but simply uses the first of the alternatives – past.

Formatting: MultiSwitch also allows you to include formatting. (And I typed that sentence by doing an ‘m’, and

running MultiSwitch.) The word comes out in italic because my list contains:

m

MultiSwitch

So all I did above was type an m, and ran the macro. If any item of alternate text that has, in the MultiSwitch list, some

sort of formatting, then the change will be made to the text, but the formatting will be brought through too.

(Useful hint: in the list, after the italic ‘MultiSwitch’ I’ve put a roman space. This means that after typing ‘m’ and

running MultiSwitch, I can carry on typing, and succeeding text will come out in roman, not italic.

Here’s another example.

46

46 Nightingale Drive, NR8 6TR

46 Nightingale Drive^pNorwich NR8 6TR

46 Nightingale Drive,^pNorwich^pNR8 6TR^p

so if I type just ‘46’, and run the macro, I can have any of the three formats:

46 Nightingale Drive, NR8 6TR

46 Nightingale Drive

Norwich NR8 6TR

46 Nightingale Drive

Norwich

NR8 6TR

Option 1 is straightforward. In option 2, you can see that I’ve used ‘^p’ to generate a new line (and you can use ^t for

a tab).

In option 3, the postcode is in bold (and a different font). The point is that when the replace item has certain

formatting, the macro copies the text out of your list, so the replacement text can have any formatting/styles you like.

For example, you could use it for things like:

H2O

H2O

CO2

CO2

and it would be sensible to have two forms of each, in case you’re typing...

h2o

H2O

co2

CO2

Then you don’t have to do capital-H, capital-O, etc.

Another way to handle a number of alternates for the same word/phrase is to put them in sequence:

so

therefore

therefore

thus

thus

hence

hence

so

so you can cycle through them by, in my case, repeatedly clicking Ctrl-Q.

In jobs where you’re using track changes, there might be some specific changes that you don’t want tracked. So, as

with FRedit and others of my macros, if you apply a single strikethrough to the alternate text, the macro knows not to

track it.

Fig.

Figure

I used this one, because I didn’t want ‘Fig. 3.2 shows blah...’ at the beginning of a sentence, but I didn’t want to track

the change.

Another feature is that if you’ve got things like ‘degrees’, ‘per cent’ etc, the macro can delete the preceding space. So,

for example, ‘10 degrees’ needs to become ‘10°’ and not ‘10 °’. You do this by adding an exclamation mark:

degrees

!°

percent

!%

per cent

!%

per annum

!/year

If the macro can’t find an alternate in your list, it beeps at you to indicate that the particular word/phrase is not actually

in your list.

General hint: I find it best to keep my alternates list in at least vaguely alphabetic order. That way I can keep track

more easily of the different words I’ve got in there. That said, I do tend to add temporasry items – for specific jobs – at

the top of the list.

But after you’ve run MultiSwitch, the cursor is left at the point in the list where it found the alternate. This means that

it’s easy to make changes to the items in the list while you think about it.

Practicalities – changing the cursor position

If you want to use MultiSwitch for expanding abbreviations, presumably you’ll want to carry on typing after the

expansion, so you will want the macro to leave the cursor after the typed-in text. So for abbreviations, can just add a

tilde at the end:

usa

United States of America~

You type ‘usa’, press Ctrl-Q and then just keep typing.

However, I have also made it so that if the Find word is only either one or two characters, it automatically makes the

assumption that it’s an abbreviation anyway and so it puts the cursor after the replacement text. So I use things like:

au

automatically

b

because

bt

By the way,

and they don’t need tildes.

And going back to the use of the tilde, note that you can put the tilde anywhere in the text, e.g.

pay

Please pay £~ into my account: 76-88-01 567892660.

In this case, if I type ‘pay’, the macro types out this line of text, and the cursor ends up immediately after the pound

sign, ready for me to type in the amount.

There’s also an option:

 includeApostrophe = True

which was set for French users so that you could have items such as:

d’opportunités

d’occasions

d'opportunités

d’occasions

opportunités

occasions

i.e. if includeApostrophe = True, then “d’opportunités” is treated as one word. Otherwise, you would end up

with and extra space: “d’ occasions”.

Sub MultiSwitch()

Extending the use of MultiSwitch
(Video: https://youtu.be/K7xfLbh26oE)

This idea started as a way of using NumberToText in other languages. The NumberToTextUK macro starts from the

cursor and searches through the text for a number (i.e. figures, like ‘5’ or ‘18’), which it then changes to ‘five’ or

‘eighteen’. But what if you wanted ‘cinq’ and ‘dix-huit’? or maybe ‘fünf’ and ‘achtzehn’?

I realised that I could write an ‘introductory’ macro to MultiSwitch , i.e. the macro would search for a number, then

automatically run MultiSwitch , and MultiSwitch would then do the conversion. So you could use NumberToTextUK

for English and then NumberToTextMultiSwitch for a second language.

So, in your zzSwitchList you would add :

1

http://wordmacrotools.com/macros/M/MultiSwitch

eins

2

zwei

3

drei

4

vier

5

fünf

etc.

If on another day, you wanted to use a different language, you could just paste, at the very beginning of your

zzSwitchList, another list:

1

un

2

deux

3

trois

4

quatre

etc

and because it’s higher up the zzSwitchList file, it would take precedence.

Then, when you quit Word, and it asks if you want to save your zzSwitchList file, just say No. Either that, or you

select the language list you want to use, and pull it up to the top of the file. Then another day, pull a different language

set of alternates to the top of your zzSwitchList. (If you want to do this often, ask me, and I’ll write a quick little

macro that automatically moves these language-based number list around within the file – it would be easy enough to

write.)

Sub NumberToTextMultiSwitch()

Search and then MultiSwitch
(Video: https://youtu.be/K7xfLbh26oE)

The idea here is to specify a set of words that you know you (might) want to change. You run this macro once, it looks

through the text, trying to find any of the words in its list (a list that you have put into the macro) and, when it finds

one, it runs MultiSwitch, which automatically changes to the alternate.

To see the idea, I’ve set it up as a Desexer macro. In other words, I’ve given it a list:

myWords = "man,he,him,his,"

and then in my zzSwitchList, I have:

http://wordmacrotools.com/macros/N/NumberToTextMultiSwitch

man

person

he

she/he

him

her/him

his

her/his

Or indeed, I could have:

man

person

he

she/he

they

him

her/him

them

his

her/his

their

That would mean that MultiSwitch would offer me, for ‘he’, a choice of either ‘she/he’ or ‘they’. OK, this might not be

what you want, but it’s just a proof of concept, and as it’s a context-free macro, you can put in whatever words you

want in the list, and then in your zzSwitchList file.

Sub SearchThenMultiSwitch()

Search and then change to alternate
This is an idea similar to SearchThenMultiSwitch, but you can use it where the alternates are different from what you

usually use in MultiSwitch, i.e. different from what is in your zzSwitchList file.

(Probably easier is to keep an alternative zzSwitchList file somewhere, and load that when you need to do this

particular job. But I’ve written the macro now, so I’m not going to throw it away!)

Same idea: run the macro, and it checks all the words until it finds one that is in its list (a list that you supply) and then

it finds the alternate – again from your list – and changes it.

These find and replace words are specified as per the following example, which is set up as a TenseChanger – present

to simple past:

myWords = "am:was, are:were, is:was, have:had, has:had, can:could,"

myWords = myWords & ",does:did, do:did, goes:went, go:went,"

The spaces are ignored by the macro; it’s the commas and colons you have to be careful to get in the right order.

If you wanted to, you could make this TenseChanger work either way round, by adding a second set to the first:

http://wordmacrotools.com/macros/S/SearchThenMultiSwitch

myWords = "am:was, are:were, is:was, have:had, has:had, can:could,"

myWords = myWords & ",does:did, do:did, goes:went, go:went,"
myWords = myWords & "was:am, were:are, was:is, had:have, had:has, could:can,"

myWords = myWords & ",did:does, did:do, went:goes, went:go,"

Drat! No, that doesn’t work, does it?! Well the macro works, but the English is wrong! It’s OK that we use

‘have−>had’ and ‘has−>had’, but of course if it’s ‘had’, should it go to ‘has’ or ‘have’ – you don’t know without the

context.

Still, this is another content-free macro; it’s up to you to decide how to use it for your own work.

Sub SearchThenChange()

Load text from a menu into the clipboard

This is just a trick I use when I want to save myself typing time in applications other than Word. MultiSwitch is fine

for saving typing time in Word, but the idea of this macro is to load up the clipboard with odd bits of information,

such as my home address, email address, username/password, etc. Then I can go to the application in question and

paste in the contents of the clipboard.

When you run the macro, it puts up a menu such as:

e - email

n - Paul Beverley

a - Address

u - UserName

p - Password

You then press your selected letter and the clipboard is loaded.

You set up your own menu items at the start of the macro:

m = m & "e - email =paul@archivepub.co.uk|"

m = m & "n - Paul Beverley =Paul Beverley|"

m = m & "a - Address =46 Nightingale Drive, Norwich NR8 6TR|"

m = m & "u - UserName =PaulBeverley66|"

m = m & "p - Password =Collywobble_543|"

Sub ClipboardLoader()

Multiple clipboard
(https://youtu.be/CqG0v77vPkA and https://youtu.be/uSW26P5ylu0)

Sub ClipStore()

Sub ClipPaste()

Sub ClipPasteTextOnly()

Sub ClipPaste_1()

http://wordmacrotools.com/macros/S/SearchThenChange
http://wordmacrotools.com/macros/C/ClipboardLoader
http://wordmacrotools.com/macros/C/ClipStore
http://wordmacrotools.com/macros/C/ClipPaste
http://wordmacrotools.com/macros/C/ClipPasteTextOnly
http://wordmacrotools.com/macros/C/ClipPaste_1

Quick word switch
The previous macro (MultiSwitch) takes the word/phrase at the cursor, looks through your switch-words list and

replaces it. By contrast, this one, WordSwitch, only works on finding single words but you don’t have to put the cursor

actually in the word – just somewhere on the line in front of it. What’s more, WordSwitch incorporates the

functionality of the NumberToText macro. So if the first ‘word’ that it finds is a number, say ‘42’, it will convert it to

‘forty-two’.

Practicalities

The list for this and the previous macro can be held in the same Word file, so it’s very easy to add and subtract

words/phrases for use by the two macros. There’s a sample list below (between the dotted lines), and as you can see, it

can include all sorts of text comments in any style. The only thing the macros use is the text on any line containing a

‘>’ (used by WordSwitch) or any line containing an ‘@’ (used by MultiSwitch):

--

Quick-find changes (WordSwitch)

one>1

two>2

three>3

four>4

five>5

six>6

seven>7

eight>8

nine>9

ten>10

eleven>11

twelve>12

thirteen>13

fourteen>14

fifteen>15

sixteen>16

seventeen>17

eighteen>18

nineteen>19

twenty>20

One>1

Two>2

Three>3

Four>4

Five>5

Six>6

Seven>7

Eight>8

Nine>9

Ten>10

Eleven>11

Twelve>12

Thirteen>13

Fourteen>14

Fifteen>15

Sixteen>16

Seventeen>17

Eighteen>18

Nineteen>19

Twenty>20

At-the-cursor changes (MultiSwitch)

that@which

which@that

last@past

past@final

like@such as

such as@as with

Like@As with

than@from

to@from

ad hoc@occasionally

England@the UK

Holland@the Netherlands

Continuously@Continually

Continually@Continuously

Continuous@Continual

Continual@Continuous

continuously@continually

continually@continuously

continuous@continual

continual@continuous

Due@Owing

due@owing

however@but

as@because

an@one

etc, etc

--

More practicalities

The macro, currently, checks the first 30 words counting from the cursor and, if it doesn’t find a match, it beeps at

you. The number of words, and whether or not it beeps is set in the first few lines of the macro.

The special character that is used as a ‘delimiter’ in the switch-words list, to mark the find and replace words, is also

set near the beginning of the macro. Currently it’s set as ‘>’ sign.

Sub WordSwitch()

Quick character switch
This is similar to the WordSwitch macro above, but it searches only for individual characters.

Practicalities

Once again, the same switch-word list file can be used. The special delimiting character, this time, is ‘_’, the underline

character.

--

Quick-find character changes

._,

;_,

,_:

:_;

for -iz- to -is- changes

z_s

Z_S

http://wordmacrotools.com/macros/W/WordSwitch

em dash to en dash

^+_^=

en dash to hyphen

^=_-

hyphen to em dash

-_^+

&_and

%_ per cent

and this autochanges to ‘percent’ if lang = US

Quick-find word changes (WordSwitch)

one>1

two>2

three>3

four>4

five>5

six>6

seven>7

eight>8

nine>9

ten>10

US>USA

and this one also does numbers to words

At-the-cursor changes (MultiSwitch)

that@which

which@that

last@past

past@final

like@such as

such as@as with

Like@As with

etc, etc

--

Sub CharacterSwitch()

Quick character switch(2)
I was using the CharacterSwitch macro above for punctuation characters, mainly, but someone asked if it could be

used for accents, say changing é to è. The answer is yes, but functionally it doesn’t work too well with my desired use

for changing punctuation.

The reason is that you can see punctuation marks way ahead along the line and so just put the cursor anywhere

vaguely before the punctuation mark in question. However, with accents, you need to put the cursor up much closer to

the character you want to change; otherwise you might ‘catch’ the wrong letter.

No worries! You just create an almost identical macro, calling it, say, CharacterSwitch2, and just change the special

delimiting character to, say, ‘\’ – the backslash. OK, it means another keystroke to remember, but you can think of the

previous one as a punctuation changer, and this one as an accent changer – it’s entirely flexible, so you can arrange

things to suit the way you work.

So below is my SwitchList file as it is now. Note that, by having a complete set of the various a’s, you can loop round

them all, coming back to the unaccented a, and then start again – click, click, click, repeatedly running the macro.

http://wordmacrotools.com/macros/C/CharacterSwitch

--

Quick-find character changes

._,

;_,

,_:

:_;

em dash to en dash

^+_^=

en dash to hyphen

^=_-

hyphen to em dash

-_^+

&_and

%_ per cent

and this autochanges to ‘percent’ if lang = US

Quick-find character changes 2

a\à

à\â

â\á

á\a

e\é

é\è

è\ê

ê\e

Quick-find word changes

one>1

two>2

three>3

four>4

five>5

six>6

seven>7

eight>8

nine>9

ten>10

US>USA

and this one also does numbers to words

At-the-cursor changes

that@which

which@that

last@past

past@final

like@such as

such as@as with

Like@As with

etc, etc

--

Sub CharacterSwitch2()

' Version 03.01.11

' Scripted character switching

' Alt-#

specChar = "\"

listName = "zzSwitchList"

myDir = "C:\Documents and Settings\Paul\My Documents\"

etc

etc

etc

Centre text
If you, like me, prefer to use a keypress to centre some text then this macro may provide a convenient form. It

switches the line of text where the cursor is to centred text, but if the text is already centred, it puts it back to left

aligned, i.e. it switches the centring on and off.

Sub CentreText()

Bulleted list item to initial uppercase
[While this may not be exactly what you want to do, it should give you a template which you can edit to do something

similar.]

This macro finds <bullet><tab> and forces the next character to uppercase. If you assign the macro to a keystroke, you

can auto-repeat it down a list.

Sub ListUcase()

Or, if you’re feeling brave, you can do the whole text in one go:

Sub ListUcaseAll()

As it stands, it works from the current cursor position down to the end, but if you want it to do the whole text,

regardless of where the cursor is, remove the ‘ ' ‘ from the .Wrap wdFindContinue line.

Auto-bulleted list item to initial lowercase
[While this may not be exactly what you want to do, it should give you a template which you can edit to do something

similar.]

This macro allows you to select an auto-bulleted (or auto-numbered) list, and it will lowercase the initial letter of each

item.

If no text is selected, it will lowercase the initial letter of every single paragraph in the whole document! But it does

warn you, just in case you forgot to select an area of text.

Sub AutoListLcaseAll()

If you only want to lowercase the initial letter of one line of your list at a time, then this will do that. Just put the

cursor somewhere on the first line and run the macro as many times as you like.

Sub AutoListLcaseOne()

http://wordmacrotools.com/macros/C/CharacterSwitch2
http://wordmacrotools.com/macros/C/CentreText
http://wordmacrotools.com/macros/L/ListUcase
http://wordmacrotools.com/macros/L/ListUcaseAll
http://wordmacrotools.com/macros/A/AutoListLcaseAll
http://wordmacrotools.com/macros/A/AutoListLcaseOne

Highlight all lists
If you want to go through a text looking at all the lists and doing things to them, it might be helpful to highlight them

all so that you don’t miss any. This macro adds a green (or whatever you prefer) highlight to every line longer than 10

characters (minLength) and shorter than 150 characters (maxLength).

Sub ListHighlighter()

Highlight all paragraphs of a range of word lengths
This macro was originally created for someone who wanted to highlight abstracts in a document that were over-length,

i.e. had more than the specified maximum allowable number of words.

However, I made it more generally applicable: it highlights all paragraphs of a given range of word lengths. (N.B. The

previous macro dealt with the number of characters.)

You can specify the minimum number of words and the maximum number, and the macro highlights paragraphs with

more than the minimum and less than or equal to the maximum. The values are set at the beginning of the macro as:

myMinWords = 50

myMaxWords = 200

So for the original application, where the maximum number of words was 250, the user would set, say:

myMinWords = 250

myMaxWords = 20000

So effectively, that would highlight all paragraphs of 251 words or more (as no paragraphs are going to be more than

20,000 words!)

Conversely, if you want to highlight all short paragraphs (similar to the previous macro), you could use, say:

myMinWords = 1

myMaxWords = 20

This would highlight paragraphs of 20 words or less.

The highlight colour is set using: myColour = wdBrightGreen

and you can tell the macro whether or not to show you its progress, by selecting each paragraph it highlights. This

slows the macro down a bit, so you might want to switch it off. The macros beeps when it has finished.

To speed the macro up, use: showAsYouGo = False

Sub ParaWordLengthHighlighter()

Title case in quotes – capital on principal words only
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

(Also video: youtu.be/AYgsFmFA7gU)

(See also CapperMax and CapperMin below.)

This is for changing a heading style – or a book or film title in quotes or brackets – into what some call title case, i.e.

all the principal words having an initial capital, and all the ‘small words’ in all lowercase, i.e.

http://wordmacrotools.com/macros/L/ListHighlighter
http://wordmacrotools.com/macros/P/ParaWordLengthHighlighter
https://youtu.be/_ijsRqUR1fE
https://youtu.be/AYgsFmFA7gU

Heading with Capitals for the Main Words

or

The film I saw was ‘A Tale of Two Cities’ and it was good.

or

This new film (A Tale of Two Cities) is really excellent.

To do the first one, use TitleHeadingCapper – simply place the cursor anywhere in the heading and run the macro. It

selects the whole heading (i.e. the whole paragraph) and sets it to title case.

For the second one, use TitleInQuotesCapper – place the cursor BEFORE the quote of the title and it will only title-

case the text that is in between the brackets/quotation marks – not the whole sentence ort paragraph. What’s more, it

now has the option, having cased that quote to jump to the next quote. It can cope with an apostrophe-s within a title

(e.g. ‘the rake’s progress’), but if there’s an s-apostrophe or a mix of brackets and/or quotation marks, make a rough

selection that includes most of the title, and it will extend the selection up to the end quotation marks/brackets.

It can search for single quotes, or double quotes, or both, by setting True/False in the two lines:

findSingles = True

findDoubles = True

(And now there’s a global version – TitleInQuotesCapperGlobal – it titlecaps all items in quotes through from the

cursor to the end of the file – be careful what you wish for!)

One option is whether or not you want it to initial-cap the first word after a colon – i.e. do you want ‘The Rake’s

Progress: The Return’ or ‘The Rake’s Progress: the Return’. This is set by the colonCap = True option.

Another option is whether hyphenated words should have initial capitals on all parts, or only at the beginning, e.g.

‘Health-Related Issues’ or ‘Health-related Issues’. For the former, use hyphenCap = True.

N.B. The macro does its best to preserve, for example ‘BBC’, rather then its ending up as ‘Bbc’, but no promises!

Other things you can choose in the setup are at the beginning of the macros:

' If the headings are all in caps, say True

allIsInCaps = False

' Do you want an initial cap after a colon?

colonCap = True

' Do you want an initial cap after a hyphen?

hyphenCap = True

' List of lowercase words, each surrounded by spaces

lclist = " a an and as at by for from if in into with is of it "

lclist = lclist & " on or that the to "

Then someone in France wanted French language titles that appeared between square brackets to us case-titled, so I

wrote a new macro that searches for the next square-bracketed text and case-titles it. It uses a list of French lowercase

words, of course:

lcList = " de le la les des du au et dans sur "

lcList = lcList & " un une en à pour chez ou"

but you could change them for the list above to use the macro in English.

Sub TitleHeadingCapper()

Sub TitleInQuotesCapper()

Sub TitleInQuotesCapperGlobal()

Sub TitleInSquaresCapperFR()

Add quotes and title cap
This macro uses the TitleInQuotesCapper macro above (so you need to have installed that macro first). Click in a

sentence, and this macro selects the whole sentence, adds quotes and then gives the sentence title quote capitalisation.

Sub AddQuotesAndTitleCap()

Remove quotes and remove caps
This macro uses the TitleUnCapper macro below (so you need have installed that macro first). Click in a sentence, and

this macro selects the whole sentence, removes the quotes and then removes the capitalisation.

Sub TitleRemoveQuotesAndCaps()

Headings: sentence case
(See also CapperMax and CapperMin below.)

This is the complementary macro to the one above: it makes all but the very first letter lowercase. But again you can

optionally set the initial letter after a colon to uppercase – near the beginning of the macro, change this line below to

True.

colonCap = False

Once again, it works on the current sentence (or heading), or, if the cursor is next to an open quote mark or an open

parenthesis, just the text between the quotes/parentheses.

Sub TitleUnCapper()

Heading: sentence case (2)
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

(Video: youtu.be/AYgsFmFA7gU)

(See also CapperMax and CapperMin below.)

I’ve just had a situation where TitleUnCapper macro above was no good. The headings were of the form:

D1.3.4 This Title Needs Decapitalising

and unfortunately my do-all-possible-variations-in-one-macro principle doesn’t work because the ‘D’ of ‘D1.3.4’ is

the start of the ‘sentence’. I have therefore had to write a separate macro that uses the tab to identify where the actual

wordage of the heading starts.

http://wordmacrotools.com/macros/T/TitleHeadingCapper
http://wordmacrotools.com/macros/T/TitleInQuotesCapper
http://wordmacrotools.com/macros/T/TitleInQuotesCapperGlobal
http://wordmacrotools.com/macros/T/TitleInSquaresCapperFR
http://wordmacrotools.com/macros/A/AddQuotesAndTitleCap
http://wordmacrotools.com/macros/T/TitleRemoveQuotesAndCaps
http://wordmacrotools.com/macros/T/TitleUnCapper
https://youtu.be/_ijsRqUR1fE
https://youtu.be/AYgsFmFA7gU

(Same applies if it’s “<C>1.2.3 This Title Needs Decapitalising” – this is also catered for now.)

However, it also has the advantage that it copes with acronyms, it will correctly change:

Obtaining NVQ Qualifications Quickly

into:

Obtaining NVQ qualifications quickly

Another added feature: sometimes, for speed, you want not to have the feature where if an area is selected that’s the

area acted on, if so, use:

allowAreaSelection = False

Sub HeadingSentenceCase()

Book titles (i.e. Italic) to title case
(See also CapperMax and CapperMin below.)

This is a rather specific macro, but it saved the person for whom I wrote it a lot of time. She had to change all the book

titles (a) in footnotes and then (b) in a references list (i.e. in a separate file) to title case. These book titles were

identified as being the only text in italic. So, the first macro title-cases all text that is in italic in the whole file, and the

second title-cases all text that is in italic in the footnotes of a file. (Change ‘footnotes’ to ‘endnotes’ in the macro if

you want it to work on endnotes.)

Sub InitialCapItalicText()

Sub InitialCapItalicInNotes()

Convert text (heading) to title case OR sentence case
(Video: https://youtu.be/7EytWsdI1pQ)

A pair of macros to title-case (CapperMax) and sentence-case (CapperMin) a set of words. This can be either the

(roughly) selected text or – if nothing it selected – the current paragraph (e.g. a heading).

The former has a list of words NOT to be capped and the second has a list of starts of words NOT to be lowercased.

CapperMax:
' List of lowercase words *not* to be uppercased

lclist = " a an and as at by for from if in is it into of "

lclist = lclist & " on or s that the to with "

CapperMin:

' List of (starts of) words *not* to be lowercased

notLC = " Brit United Kingd Engl Welsh Wales "

notLC = notLC & " Scot Irel Irish "

Obviously the words that you want not to uppercase (lowercase) will be different. You can add as many as you like,

but please following the pattern above. You can add a third line, like the second, to fit more words in.

http://wordmacrotools.com/macros/H/HeadingSentenceCase
http://wordmacrotools.com/macros/I/InitialCapItalicText
http://wordmacrotools.com/macros/I/InitialCapItalicInNotes

With the former, you can decide whether or not to cap the word following a colon and/or the word following a

hyphen.

One editor said that one of their clients wanted an initial cap after a colon, so I added that as an option:

' uppercaseAfterColon = True

uppercaseAfterColon = False

Sub CapperMax()

Sub CapperMin()

All caps to title case
One editor had over 30 pages with probably 50 or more all-caps entries each of which had to be converted to initial

caps. Here is a macro that finds all-caps words of three or more letters, and turns them all to just and initial cap.

I made it ignore two-letter words because the sample of text I tried it on had several ‘BS 429’ etc.

If you want it to do two-letter words as well, as in ‘THE TITLE TO WATCH’, then change the line in the macro to:

 .Text = "[A-Z]{2,}"

And at the moment, it highlights every word it changes, but you can just delete that line if you don’t want it to.

Sub AllCapsToInitialCap()

Superscript next note number
If you have footnotes or endnotes which are supposed to have the note number at the beginning of the line in

superscript, this macro goes from one line to the next and superscripts the digit(s) at the beginning of the line – run the

macro once for each line to have its number superscripted.

Sub SuperscriptNoteNumber()

Apply/remove italic/bold
These two macros apply italic/bold to the current selection. OK, so what’s wrong with using Ctrl-I and Ctrl-B? Well,

if you double-click a word, it selects the space following the word as well. I generally don’t want the space to be

italic/bold. Also, double-clicking a word that is followed by a single quote (be it straight or curly) also selects the

quote, and I don’t want the quote mark to be italic/bold either.

So these macros first pull back the selection away from the space and/or the quote before applying the italic/bold.

Also, if nothing is selected, these macros inch forward by one character, italicising or boldising.

Sub Italiciser()

Sub Boldiser()

In one job I was forever removing the bold from short or long pieces of text, so it seemed helpful to have a macro that

would remove the bold quickly and easily (and removed it without tracking the change).

http://wordmacrotools.com/macros/C/CapperMax
http://wordmacrotools.com/macros/C/CapperMin
http://wordmacrotools.com/macros/A/AllCapsToInitialCap
http://wordmacrotools.com/macros/S/SuperscriptNoteNumber
http://wordmacrotools.com/macros/I/Italiciser
http://wordmacrotools.com/macros/B/Boldiser

If no text is selected, it assumes that you want to unbold the current line. Having done so, it moves down a line, in

case you want to run it again for the next line. If some text is selected, however, it removes the bold from just that bit

of text.

Sub BoldKill()

And here’s the same thing for italic...

Sub ItalicKill()

And for really speedy adding/removing bold and italic, these two macros allow you to switch the attribute on/off a

single word, simply by clicking in a word and running the macro.

For more words, click somewhere in the first word and then shift-click somewhere in the final word. The macro will

round off the selection to the full start and end word before switching the attribute on/off.

Sub ItalicQuickSwitch()

Sub BoldQuickSwitch()

Removing styles and attributes from text
I’ve long been unhappy with removing formatting by using Word’s Ctrl-Space action – which runs the ResetChar

function, so I’ve written a more ‘intelligent’ version – by which I mean that (a) it works differently, depending on

what area of text is selected and (b) you can set, in the macro itself, which features do/don’t get ‘normalised’ (i.e.

removed).

1) If no text is selected, it normalises the whole of the current paragraph.

2) If parts of more than one paragraph are selected, it normalises all of those paragraphs, i.e. you don’t need to

accurately select whole paragraphs, but just select roughly.

3) If an area of text within one paragraph is selected, it only normalises the selected text and does not change the

paragraph style.

Also, you can optionally decide whether the macro should remove highlighting and colour:

removeHighlight = True

removeColour = True

If a part paragraph is selected – i.e. (3) above – the features that are normalised are set by (at the beginning of the

macro):

resetAllFormat = False

' which, if true, makes these redundant

resetBoldItalic = True

resetFontName = True

resetFontSize = True

resetSubSuper = True

i.e. the first option, if True, removes all character formatting (leaving the paragraph style unchanged), but you

might, say, want to retain the font size, or not change the font name – your choice.

Sub NormaliseText()

Italicising variables in an equation (1)
Suppose you have an equation:

http://wordmacrotools.com/macros/B/BoldKill
http://wordmacrotools.com/macros/I/ItalicKill
http://wordmacrotools.com/macros/I/ItalicQuickSwitch
http://wordmacrotools.com/macros/B/BoldQuickSwitch
http://wordmacrotools.com/macros/N/NormaliseText

Zpq = x2 + y2 – q3/(Gmax – Gmin)

and you want to italicise the variables but not, of course, the numbers or the operators. No problem, watch:

Zpq = x2 + y2 – q3/(Gmax – Gmin)

That took me six clicks, i.e. I put the cursor at the beginning of the line and ran the macro six times.

But then you spot that, if you’re being posh, the ‘max’ and ‘min’ should have been roman. Two mouse clicks plus

running the macro twice more, gives:

Zpq = x2 + y2 – q3/(Gmax – Gmin)

i.e. I put the cursor in front of each of ‘max’ and ‘min’, and the macro unitalicised them.

I’ve added three extra features. If, rather than just clicking somewhere in the text, you select some text, it simply

(un)italicises the selected text.

Secondly, I found that with, say ‘Cs, Ci, and Dapp (t0)’, I got on a roll and ended up with ‘Cs, Ci, and Dapp (t0)’, so I got

the macro to check if the ‘variable’ was ‘and’, and if so just do nothing and move on.

If you don’t (or do) want these changes tracked, the first line of the macro decides:

doTrack = False

I have found that this macro can “run away with itself” when working inside a table. I’ve therefore set a limit so that,

after a certain number of characters it stops, so that you don’t have to undo (a character at a time!) all the rogue

italicisations it has done.

maxChars = 10

Sub ItaliciseVariable()

Italicising variables in an equation (2)
A variation on the theme is ItaliciseOneVariable, which is similar, but it has two modes of working.

(1) Similar to ItaliciseVariable, it runs along the line until it finds an alpha character (i.e. a variable) and but it only

italicises that one single character, so it can be used more selectively than the previous macro; use multiple clicks of

the macro if there are a couple of variables near each other.

(2) More powerfully, if you select some text then it italicises it all at one go, but only the variables, of course, not the

numbers or the maths symbols.

So with this equation:

Zpq = x2 + y2 – q3/(Gmax – Gmin)

it would take three clicks of the macro to italicise the first term; another four macro clicks and the ‘x’, ‘y’, ‘q’, and ‘G’

are done. Then put the cursor somewhere near the minus sign and click the macro again to do the second ‘G’.

However, if you select from the ‘Z’ to the ‘q’, one macro click sorts that out, then a second click and the macro runs

along and gets the first ‘G’, and as before move the cursor and catch the second ‘G’.

Sub ItaliciseOneVariable()

http://wordmacrotools.com/macros/I/ItaliciseVariable
http://wordmacrotools.com/macros/I/ItaliciseOneVariable

Romanise an existing italic
This macro looks along the line until it finds a bunch of italic characters, and unitalicises them.

Sub Romanise()

Romanise italic/bold punctuation
(I’ve added a bold-to-roman version.)

This macro looks through the whole document to finds any italic punctuation that is not in the middle of an area of

italic text, and unitalicises it. The aim is to catch, say, “the x, y, and z axes...” where the commas are italic and should

be roman.

Currently it works for comma, semicolon, colon and full point (period). However, this is set in the macro and can be

changed.

Any punctuation that has been romanised will be highlighted, so when you’re reading through, you can check if it’s

done the right thing and you can also get it to highlight the punctuation that it has checked but not changed. For no

highlighting of unchanged punctuation, use:

' stayItalicColour = wdYellow

stayItalicColour = wdNoHighlight

and to highlight it, change this to:

stayItalicColour = wdYellow

' stayItalicColour = wdNoHighlight

Sub PunctuationItalicOff()

Sub PunctuationBoldOff()

Make a phrase italic
(Video: youtu.be/P-6VdmT2BbE)

This was asked for, if I remember rightly, by someone having to italicise a load of book titles in a long references list.

So, click somewhere in the first word of a title and run the macro. It selects up to, but not including, the next

punctuation mark, and italicises it.

So in the list below, just click anywhere in each of the words that I’ve highlighted (just so you can see them – nothing

to do with the macro)...

Kabata-Pendias A, and Pendias H (2001) Trace Elements in Soils and Plants (METHA). CRC Press, Boca

Raton. 413pp.

Kisić, I (2014) Effects of soil contamination on the selection of remediation methods. In Guarina-

Medjimurec, N. (ed.) Handbook of research on advancements in environmental engineering. IGI Global,

660pp.

Knüppel J (2012) Land treatment of dredged material including Mechanical Treatment and Dewatering of

Harbor sediments (Third ed.). HPA.

and you will end up with:

Kabata-Pendias A, and Pendias H (2001) Trace Elements in Soils and Plants (METHA). CRC Press, Boca

Raton. 413pp.

http://wordmacrotools.com/macros/R/Romanise
http://wordmacrotools.com/macros/P/PunctuationItalicOff
http://wordmacrotools.com/macros/P/PunctuationBoldOff
https://youtu.be/P-6VdmT2BbE

Kisić, I (2014) Effects of soil contamination on the selection of remediation methods. In Guarina-

Medjimurec, N. (ed.) Handbook of research on advancements in environmental engineering. IGI Global,

660pp.

Knüppel J (2012) Land treatment of dredged material including Mechanical Treatment and Dewatering of

Harbor sediments (Third ed.). HPA.

You will notice that, in the last one, it has not italicised the ‘)’. That’s because the macro saw the full stop on ‘Ed.’

But no worries, just move the cursor one place to the right and run the macro again, and it will italicise the ‘)’! On a

long references list, this has got to save a lot of time – and tedium, right?!

If there’s a job where you also want to italicise the punctuation mark, then at the start of the macro, you’ve got:

andThePunctuation = False

so change it to True.

And if you want to italicise phrases that occur inside parentheses, you’ve got:

includeParens = True

so change that to False.

Sub ItalicisePhrase()

Italicise biological binomial species names
This macro, ItalicBinomial, can turn:

Cyperus papyrus subspecies madagascariensis

Cyperus papyrus subsp. madagascariensis

Cyperus papyrus ssp. madagascariensis

Bazzania decrescens var. ambahatrae

B. decrescens var. ambahatra

into

Cyperus papyrus subspecies madagascariensis

Cyperus papyrus subsp. madagascariensis

Cyperus papyrus ssp. madagascariensis

Bazzania decrescens var. ambahatrae

B. decrescens var. ambahatrae

in five clicks of the keystroke.

So, when you find a binomial as you’re reading through the text, simply click in the first word and run the macro.

The macro will then search out the very next initial capital letter, just in case there’s another binomial nearby.

However, if this is more of a hindrance than a help, simply change the line:

jumpNext = True

to

jumpNext = False

http://wordmacrotools.com/macros/I/ItalicisePhrase

In fact, also, if the ‘subsp’ or ‘var’ is in italic, it reverts it to roman.

Sub ItalicBinomial()

Make italic text more easily visible
This macro was created for a job where the author (on his own admission) overused italic: almost every other word

was italicised for stress. So this macro uses underlining to make the italic characters more visible. So the above

sentence then becomes:

This macro was created for a job where the author (on his own admission) overused italic: almost every

other word was italicised for stress.

I could then take all the italic off a paragraph, which is quickly done, leaving:

This macro was created for a job where the author (on his own admission) overused italic: almost every

other word was italicised for stress.

Then as I read the paragraph, I can decide which of the words really do need to be italic, if any.

What’s more, the macro is very useful for something like the example given for the previous macro:

the x, y, and z axes...

which becomes:

the x, y, and z axes...

So I can see immediately that the commas are italic – which is otherwise not that easy to see with the naked eye.

Each time you run the macro, it first removes all the underlining in the whole document, then adds it to the (now

reduced) characters that are still in italic.

Sub UnderlineOnlyItalic()

Applying funny underlines
(Video: youtu.be/P-6VdmT2BbE)

Words allows you to use ordinary underlines, but all sorts of different funny underlines. This macro allows you to

change the style of the underlines in either a selected area of text or all of the bits of underlined text in the whole of the

file.

http://wordmacrotools.com/macros/I/ItalicBinomial
http://wordmacrotools.com/macros/U/UnderlineOnlyItalic
https://youtu.be/P-6VdmT2BbE

Sub UnderlineStyle()

Sub/superscript on/off
For years now, I’ve used F4 and F5 to turn super and subscript on and off (you can use whatever keystroke you want,

of course):

Sub SuperscriptOnOff()

Sub SubscriptOnOff()

However, it occurred to me recently that I could do it a bit more intelligently. What I’ve done is to make each of the

SubscriptSwitch and SuperscriptSwitch macros so that they are three-state switches: on, opposite, off.

So each macro goes through all three, but in the opposite direction. I’ve got used to using F4 for subscript and F5 for

superscript, but sometimes I press the wrong one, so now I just press the ‘wrong’ key a second time.

If no text is selected, it selects the character to the right of the cursor.

Sub SubscriptSwitch()

Sub SuperscriptSwitch()

Actually, I’ve changed my mind. In practice, I don’t like these two new macros. So I’ve gone back to the old ones

above!

Italic to single (or double) quote toggle
“I keep having to change ‘Title of Something’ in single quotes to Title of Something in italic – might it be possible to

do this with a macro?” she said.

Yes, sure! Place the cursor anywhere between the single quotes and run the following macro: the title will turn to italic

with the quotes removed. What’s more, it also works the other way round: place the cursor anywhere in some italic

text and run the macro and the text will turn back to roman with the quotes added around it.

http://wordmacrotools.com/macros/U/UnderlineStyle
http://wordmacrotools.com/macros/S/SuperscriptOnOff
http://wordmacrotools.com/macros/S/SubscriptOnOff
http://wordmacrotools.com/macros/S/SubscriptSwitch
http://wordmacrotools.com/macros/S/SuperscriptSwitch

In other words, each time you run the macro, the title will toggle between being in italic and having single quotes

round it.

Oh, you want double quotes? OK, change the first line of the macro to:

useSingle = False

Sub ItalicQuoteToggle()

Applying an attribute to some text
Here’s a macro that applying an attribute (here double-underline) to ‘some text’.

If the cursor is in a table, the macro applies the attribute to the current cell (or column or row, if you prefer – adjust the

macro accordingly), but, if not...

If some text is selected, it applies it to that, but, if not...

It applies it to the current paragraph (or, if you prefer, sentence or word – adjust accordingly).

Sub ApplyAttribute()

Select highlighted text
This macro allows you to place the cursor anywhere in the middle of an area of text that is highlighted in a particular

colour. Running the macro then selects the whole of that piece of highlighted text.

You can use this macro just to select the highlighted area, but when the area is selected, you might as well do

something with it – in my case, I wanted to italicise (or unitalicise – it toggles italic on/off) the text and then remove

the highlight. You can no doubt adjust the last few lines of the macro to do to the text whatever you want.

Sub SelectHighlightedText()

Paste as unformatted text
(This macro gets a mention in video: youtu.be/_ijsRqUR1fE)

When you copy some text and paste it somewhere else, it sometimes screws up the formatting. What you need to do is

to paste what is on the clipboard as pure text so that it takes on the formatting of the destination text.

Install this macro and give it the keyboard shortcut, say, Ctrl-Alt-V. Then, if you paste some text and realise there’s a

problem with mismatched formatting, you just Ctrl-Z to undo the paste, and then Ctrl-Alt-V to re-paste it as text.*

Sub PasteUnformatted()

Another example where this tiny macro is really useful is when the author has used some odd combination of changes

in font size, font style etc to achieve a ‘clever’ effect. Returning it to ‘proper’ text is easy: make a selection of the text

– a few characters either side of the rogue characters will do – and do Ctrl-X then Ctrl-Alt-V.

Another facility I’ve discovered makes this facility even more useful:

Sub PasteWithEmphasis()

http://wordmacrotools.com/macros/I/ItalicQuoteToggle
http://wordmacrotools.com/macros/A/ApplyAttribute
http://wordmacrotools.com/macros/S/SelectHighlightedText
https://youtu.be/_ijsRqUR1fE
http://wordmacrotools.com/macros/P/PasteUnformatted
http://wordmacrotools.com/macros/P/PasteWithEmphasis

What happens now on my computer is as follows: I copy something and paste it into a new file, but I see that it’s

bringing too much formatting with it from the original, so I do a Ctrl-Z to undo the first paste and then I have two

options:

(a) The complete, radical, ‘paste as pure text’, introduced above, so that it simply takes up the format of the text into

which it is inserted.

(b) A much more intelligent paste where it takes the basic style of the local text but it does at least bring with it the

bold, italic, small caps, super/subscript etc that had been applied in the original file. So that means that H2O and stress

and 60AD would come through intact, but in the style of the paragraph into which they are pasted.

Getting pure text from PDFs and websites
The above two macros are OK when copying and pasting within Word, but if you copy something from other

applications, such as PDFs or websites then getting the text out can sometimes be more problematic; the above macros

may work, but if not, the following macro may well help.

It assumes that the clipboard is loaded with goodness-knows-what, from goodness-knows-where, but that it includes

some text. If so, when you run it, it should paste into your document just the pure text out of whatever-it-was.

What it does is to open a new document, paste the who-knows-what in there wholesale. Then it copies it again, closes

the new file, goes back into the original file and pastes just the text. Yes, I know, in theory it shouldn’t make any

difference, but sometimes it does – pasting just the text out of something copied from a Word file often succeeds

where pasting what has been copied directly out of a PDF or webpage doesn’t.

N.B. If there’s lots of data on the clipboard, Word my take several seconds, maybe even minutes, to process it. Please

be patient and don’t start clicking on the Word file to get it to respond to you. If you really want to give up, press Ctrl-

Break to stop the macro.

(If your keyboard doesn’t have a Break key, you can still stop a macro mid-program. If you run the macro with the

VBA window open and visible on screen, then you can use the stop ‘■’ icon to stop the macro running. STOP PRESS!

I’ve just discovered that, while a macro is running, yes, don’t move the mouse, but you can use the keyboard – press

Alt-F11, VBA will then open, and you can press pause ‘||’ or stop ‘■’.)

(And you could try it with the PasteWithEmphasis function I discovered recently. I haven’t tried it yet.)

Sub ClipToText()

Sub ClipToTextWithEmphasis()

Text from PDFs

However, when text is exported from a PDF there are sometimes two problems:

(a) Some words areruntogether and you couldn’t easilyseparate them.

(b) Ligatures come out as different letters, perhaps capital V and capital W.

I’m pleased to say that (for my current job only) I have solved both problems.

(a) is sometimes solved (or reduced, at least) by saying to the client, ‘The lo-res PDFs you sent aren’t good enough

quality. Please would you send me hi-res PDFs?’

The text scraped out of the new file still has afew joinedup words, but nothing that a quick spellcheck won’t sort out.

(b) is solved courtesy of FRedit and a bit of patient working out of the necessary wildcard F&Rs.

http://wordmacrotools.com/macros/C/ClipToText
http://wordmacrotools.com/macros/C/ClipToTextWithEmphasis

(Interestingly, in the PDF for which I generated this list, all the ‘fl’s did actually came out as ‘fl’. It was only the ‘fi’

and the ‘ff’ that were converted to W and V respectively!)

So here’s the list I used:

~W([bcdfgjklmnpqstvwxz])|fi\1

~V([bcdfgjklmnpqstvwxz])|ff\1

~([a-z])W|\1fi

~([a-z])V|\1ff

~Wr([!io])|fir\1

While this has worked for this particular job, another job might have slightly different issues and require a slightly

different FRedit list. What I suggest is that you examine where the problems lie, try a list something like this, start to

spellcheck the resultant file and see what hasn’t worked. Then refine the list and try again.

Copy and paste styles
There’s no need for any macros for this, although you can if you prefer:

Sub StyleCopy()

Sub StylePaste()

However, the CopyFormat and PasteFormat commands can be assigned to keystrokes directly. All you need to do is to

use the Customize Keyboard dialogue box (call it up with my CustomKeys macro!) and select ‘All Commands’ in the

left-hand list and then, in the right-hand list, find CopyFormat (there are a lot of commands, but pressing the ‘c’ key

will at least get you to the beginning of the p’s, then pressing ‘d’ takes you to the beginning of the d’s, i.e. the end of

the c’s) and assign a keystroke to it. And then do the same for the PasteFormat command.

Unify the style of a paragraph or selection
(Video: https://youtu.be/hqPVJSZsFDk)

If the attributes/formatting (italic, bold, colour, highlight etc) have got a bit mixed up – perhaps through sections of

text having been copied from elsewhere – then these two macros apply the same formatting to a section of text.

If some text is selected, it reads the style at one end of the selection, and applies it to the whole of the selected text.

One macro copies the format forwards, and the other copies it backwards.

If no text is selected, the macro reads the format at the cursor, and then applies it from there to the beginning of the

current paragraph or from there to the end of the paragraph.

(I find this a useful way to clear URLs back to the normal font etc.)

Sub UnifyFormatForwards()

Sub UnifyFormatBackwards()

Copy to and paste from the spike
I’ve never really been able to get my head around the spike, so I’ve implemented my own version which I find more

intuitive (you may not!) as it’s a bit more like the way the clipboard works. It has three functions:

1) Copy the selected text to the spike

2) Cut the selected text to the spike

3) Paste the whole contents of the spike

http://wordmacrotools.com/macros/S/StyleCopy
http://wordmacrotools.com/macros/S/StylePaste
http://wordmacrotools.com/macros/U/UnifyFormatForwards
http://wordmacrotools.com/macros/U/UnifyFormatBackwards

So the way my system works is that you can copy and/or cut a number of items of text to the spike. You then navigate

to wherever you want it all to be placed and paste the spike. They come out in the order in which they were put onto

the spike.

Unlike with the clipboard, when you paste the spike, the spike is then emptied. In other words, if there’s something on

the clipboard, you can paste it repeatedly, but with the spike, you paste it once and it’s gone from the spike.

Sub SpikeCopy()

Sub SpikeCut()

Sub SpikePaste()

Adding tags (codes) locally
(Video: youtu.be/AYgsFmFA7gU)

OK, there are ways of adding tags/codes (whatever you like to call them) automatically through the whole of a file,

but maybe that’s all a bit too techie, and you just want to save yourself some typing time. What I do is to have macros

assigned to, say, Ctrl-Shift-Alt-A, Ctrl-Shift-Alt-B, Ctrl-Shift-Alt-C and Ctrl-Shift-Alt-D – just use whatever

keystrokes you’re happiest remembering.

Things vary from job to job, so the macro has various options at the beginning to determine what it does. When you

move to a new job, you can change the options.

I can think of three different formats that a client might want:

1)

<A>This is the heading

This is the first line after the heading.

2)

<A>This is the heading

This is the first line after the heading.

3)

<A>This is the heading

This is the first line after the heading.

They would all want startText = "<A>", obviously, but to produce (1), you’d have endText = "", i.e.

endText = nothing. So put a ‘'’ in front of the endText lines that you don’t want, and remove the ‘'’ from in front

of endText = "".

For (2), you would want endText = "" and endTextOnSameLine = True.

For (3), you would want endText = "" & newLine and endTextOnSameLine = False.

Sub TagA()

Tagging displayed quotations
(Video: youtu.be/AYgsFmFA7gU)

If you have quotations that need tagging, then this macro will add <DQ> and </DQ> (or whatever). Just place the

cursor somewhere inside the paragraph to be displayed.

http://wordmacrotools.com/macros/S/SpikeCopy
http://wordmacrotools.com/macros/S/SpikeCut
http://wordmacrotools.com/macros/S/SpikePaste
https://youtu.be/AYgsFmFA7gU
http://wordmacrotools.com/macros/T/TagA
https://youtu.be/AYgsFmFA7gU

However, it also has the facility to (a) remove italic (which some authors like to add), (b) remove initial and final

quotation marks from the paragraph, and (c) add a named style to the paragraph.

Sub TagDQ()

Tagging bits of text
Someone wanted two macros – one to add <i> and </i> around “the next bit of italic text”, and another to add <IEQ>

and </IEQ> around the currently selected text, and he wanted the tags to be coloured in red. So I put the two into one:

if no text is selected, the macro whizzes along until it finds the next bit of italic (resp. bold) text and adds the <i> tags,

but if some text is selected, it adds the <IEQ> tags.

And I’ve done a copy of the macro for bold instead.

The actual text of the tags is set up at the beginning of the macro:

tagTextSelected = "<IEQ></IEQ>"

tagTextItalic = "<i></i>"

Sub TagSelectedOrItalic()

Sub TagSelectedOrBold()

Tagging lists
If you’ve got lists to tag, this macro should tag any kind of list: lettered, numbered or bulleted, whether it’s an

automatic list or a list created with a style, or just a manually lettered, numbered or bulleted list. Just place the cursor

on the first item of the list and run the macro (and while you do so, I’ll cross my fingers), and it will work out which

type of list it is and (should) tag it accordingly.

You should end up with...

<NL>1. This is the first line.

2. Second line

3. Third line

4. Fourth line

5. Fifth line</NL>

or...

<BL>• This is the first line.

• Second line

• Third line

• Fourth line

• Fifth line</BL>

or...

<LL>a. This is the first line.

b. Second line

c. Third line

d. Fourth line

e. Fifth line</LL>

As with the previous macros, you can customise the codes it uses, and the positioning of the final tag.

http://wordmacrotools.com/macros/T/TagDQ
http://wordmacrotools.com/macros/T/TagSelectedOrItalic
http://wordmacrotools.com/macros/T/TagSelectedOrBold

There’s sure to be some permutation or combination of list creation that I haven’t thought of. So if it fails to tag your

list properly, please send me a sample list, and I’ll try to add the necessary extra bits to the macro.

Sub TagList()

Tagging captions
This macro goes through the whole file, adding a tag <Cap> or whatever, to all the figure captions, table captions and

box captions. And it also checks to see if the caption has a full point (period) at the end (if wanted – not all clients do).

Sub FigTabBoxTagger()

Checking continuity of tags
These two macros (a first iteration thereof) were asked for by a US client who wanted to check the continuity of those

tags that are supposed to alternate: <it>, </it> or , or <BL>, </BL> for italic, bold and bulleted list.

But actually it doesn’t matter what specific codes you’ve used because the macro only checks one at a time – you just

put the cursor inside a tag, and the macro reads it and checks it.

The first macro, TagChecker, checks continuity by going through the text, starting from the tag inside which you place

the cursor. It looks for “<XXX>” and “</XXX>” being in alternating sequence, and it stops if the sequence is broken.

If it gets to the end of the text and beeps then you know that all these tags are in pairs.

Each time it stops, and you make a correction, just put the cursor back inside one of the tags (either the on or the off

tag will do) and run the macro again.

The second macro, TagHighlighter, gives you a ‘map’ of the use of the tag inside which you place the cursor, i.e. it

creates a second copy of the document – just the text – and highlights the places where this tag is operative. So a too-

large area of highlighting might indicate an error in the tagging.

If you wind the screen magnification out, to view many pages on screen at one go, that might help you to see what’s

going on. If you then click in a suspect area and run the FindSamePlace macro, it will jump the cursor straight back

into the main document, at that specific place.

If you then want to check a different tag, the macro will sense that you already have a file that’s a copy of your

document and it will remove the first lot of highlighting and insert new highlighting for this new tag.

Hope they prove useful. I suspect that the first, alone, will do the trick, but who knows.

Sub TagChecker()

Sub TagHighlighter()

Border off paragraphs
This arose when a client discovered that, by typing ‘---’ he got ‘a nice dotted line to divide off the text’. But he and I

didn’t know how it was done or, more importantly, how to remove it! It looks like this:

Consulting the experts on SfEPLine revealed that it was a border attached to the paragraph with only the line below

the paragraph having a visible (dotted) line. So the macro below removes the borders around the paragraph.

Sub BorderParaOff()

http://wordmacrotools.com/macros/T/TagList
http://wordmacrotools.com/macros/F/FigTabBoxTagger
http://wordmacrotools.com/macros/T/TagChecker
http://wordmacrotools.com/macros/T/TagHighlighter
http://wordmacrotools.com/macros/B/BorderParaOff

Find and replace apostrophes
This is a funny one! In Word, I tried to do a find and replace, to change ‘Gerard ‘t Hooft’ to ‘Gerard ’t Hooft’.

However, even if I tried changing ‘^0145t Hooft’ to ‘^0146t Hooft’, Word insisted on giving me the open single quote

mark. Arrgghhh!

The only way round it seemed to be to switch off the automatic curly quote option, do the F&R and then switch it

back on again. So I wrote this macro (needlessly, as you will see in a minute):

Sub FandRapostrophe()

However, when I came to write up this macro for the book, I thought, ‘I wonder if you get the same problem with

FRedit.’ You don’t! If you use:

^0145t Hooft|^0146t Hooft

^0145phone|^0146phone

it works perfectly, ignoring the auto curly quotes feature. Sorted! :-)

Inserting special characters (accents)
To insert ‘funny’ characters into the text, Word provides the Insert Symbol window. But do you have the same

problem as me? If I want an accented character, say an ‘à’, I call up the Symbol window, then spend ages scrolling up

and down, trying to find the section where these symbols occur.

Not any more. This macro types an accented character (any old character) into the text, and selects it. Then, when it

calls up the Insert Symbol window, it goes straight to the accented characters section so that I can select the one I want

straight away. On clicking ‘Insert’, my selected character replaces the one that the macro inserted.

Sub AccentPicker()

Inserting special characters (Greek)
Here’s the same macro but for Greek characters.

Sub GreekPicker()

Inserting special characters (scientific)
And here’s the same macro but for scientific characters such as ≈, ≡, ≈, ≤, →, ⅔, ∞, which are all near to each other on

the Insert Symbol dialogue box.

Sub SciMarkPicker()

Move date within reference
(Video: youtu.be/C1pIYOjKXXI)

This macro assumes that the reference is of the form:

Bloggs, Leon. The Hungry Soul: Eating and the Perfecting of Our Nature.

Chicago: University of Chicago Press, 1999.

and should be changed to:

http://wordmacrotools.com/macros/F/FandRapostrophe
http://wordmacrotools.com/macros/A/AccentPicker
http://wordmacrotools.com/macros/G/GreekPicker
http://wordmacrotools.com/macros/S/SciMarkPicker
https://youtu.be/C1pIYOjKXXI

Bloggs, Leon. (1999) The Hungry Soul: Eating and the Perfecting of Our Nature.

Chicago: University of Chicago Press.

Place the cursor in the first reference, run the macro, and it will stop when it hits either a blank line or the end of the

file. It highlights and/or colours every reference it has not changed, so a highlighted and/or coloured reference means

that it couldn’t find a date at the end of it.

You can choose your highlight colour and/or font colour by setting the lines at the beginning of the macro

accordingly.

Sub ReferenceDateShift()

Add dates to reference citations
(Video: youtu.be/C1pIYOjKXXI)

In the job for which the previous macro was written, the author had cited the references by name only, and not

bothered to add the date. So with this macro, you again place the cursor on the first reference in the list. It then picks

up the name and date of each reference, goes to the top of the file, finds the first occurrence of that name and adds the

date in brackets. So, for:

Bloggs, Leon (1999). The Hungry Soul: Eating and the Perfecting of Our Nature.

Chicago: University of Chicago Press.

If the text says, ‘The view of Bloggs is that eating is a good thing’, it then becomes ‘The view of Bloggs (1999) is that

eating is a good thing.’ It highlights the name and added date which is useful if you decide it’s in the wrong place and

want to move it. (By changing the first four lines of the macro, you can change the colour of the highlighting and/or

use coloured font.)

But this is only works, of course, if Bloggs only has one cited reference. But then if there are two, and the author just

says, ‘Bloggs shows...’ then you’ve got to raise an author query anyway. You’ll just get: ‘The view of Bloggs (2007)

(1999) is that eating is a good thing.’ at the first occurrence of Bloggs’s name.

The macro is a bit intelligent too. If the citation it finds is ‘(Brown: 81–82)’, it doesn’t just change it to ‘(Brown

(2010): 81–82)’ but rather ‘(Brown 2010: 81–82)’.

Sub ReferenceNameFinder()

List all references in the notes (for converting to short title)
(Video: youtu.be/C1pIYOjKXXI)

The idea here is to create a separate file with an alphabetic list of all the references in the footnotes, e.g.

1 See explanation in J Smith, Ask Me to Dinner (London: Peter, 1998) 164.

It picks out all the text looking like “J Smith, Ask Me to Dinner (London: Peter, 1998) 164.” and creates a list of them.

You can then use that list to help you see what need to be made into short title form (sorry, I’ve never used short titles,

so I don’t know quite what you do, but having a list of all the references is reputedly useful.)

(At this point, you might want to make use of FindSamePlace, to jump back and forth between the main text and the

references list. Oh, bother! I’ve just tried it, and while FindSamePlace allows you to jump from the footnotes out to

the refs list, but it can’t manage to jump you back again because it only looks in the main text, and not the footnotes. If

you want that feature, please ask, and I’ll add it to FindSamePlace. 19.05.13)

http://wordmacrotools.com/macros/R/ReferenceDateShift
https://youtu.be/C1pIYOjKXXI
http://wordmacrotools.com/macros/R/ReferenceNameFinder
https://youtu.be/C1pIYOjKXXI

Anyway, can you see a problem? What about, say,

HLA Smith, The Concept of Fish, 2nd ed, edited by C Brown and J Round (Oxford: Clarendon Press, 1997) vi.”?

Unfortunately, it will split this into two ‘references’ because it has found two ‘authors’:

C Brown and J Round (Oxford: Clarendon Press, 1997) vi.

HLA Smith, The Concept of Fish, 2nd ed, edited by

OK, so when you run the macro, it asks if you want to do a test run. On the first run, you say ‘Yes’, and you’ll be able

to see that the above reference has been split, so now you go back to this reference in the notes and ‘blank off’ the

editors’ names by making them a different font colour:

HLA Smith, The Concept of Fish, 2nd ed, edited by C Brown and J Round (Oxford: Clarendon Press, 1997) vi.

If you run a test again, you’ll see that it has not highlighted Brown. (The highlighting is the sign that it is going to be

the start of a new, separate reference.)

When you run the macro and say ‘No’ to the test run, it creates a complete list. However, it puts the ‘leftovers’

separately at the bottom, so you can look at them and see if any of them are actually references, even though the

macro has missed them. This might be a fault of the macro (shock, horror!) or a fault in the formatting.

And what if you have organisations that it has missed? For example:

Law Commission, Cohabitation: The Financial Consequences of Fish (Law Com No 307, 2007).

You can give them dummy initials:

ZCZC Law Commission, Cohabitation: The Financial Consequences of Fish (Law Com No 307, 2007).

This now makes it look like a name: Mr ZCZC Law. But you obviously have to remember to take the initials out later.

(If you are a FRedit user, you can just add a line ‘ZCZC|’ to your FRedit list.)

If your author uses some name format other than ‘J Smith’ – say ‘J. Smith’ or ‘Smith, J’ etc – look at the beginning of

the macro, and you will find a range of different name formats. So add a ‘'’ in front of the search pattern that you don’t

want and delete the ‘'’ in front of the search pattern that you do want.

If you come unstuck with this, do please send me a sample file, and I’ll try to fix it.

Sub ShortTitleLister()

Change author forenames in references list to initials
(Video: youtu.be/C1pIYOjKXXI)

If the references list has full forenames (Smith, John James), but it’s supposed to be initials (Smith, J J) then this

macro will offer you each name in turn, and you can decide whether to reduce it to an initial, or ignore it, or jump to

the next reference, then press the following:

<.><Enter> – initialise

<Enter> – skip to next word

<+><Enter> – jump to next reference line

<0><Enter> – stop the macro

http://wordmacrotools.com/macros/S/ShortTitleLister
https://youtu.be/C1pIYOjKXXI

The macro tries to be a little bit intelligent. First, it ignores words in all caps, such as acronyms (or surnames in all

caps – see next macro). Second, if you tell it to jump to the next reference, it first checks to see if there is some text

saying, for example, “(Eds. John Smith & Fred Brown)”, in which case it offers you these names.

The choice of zero, plus and full point (period) is simply because these keys are near to the numeric keypad Enter key.

If you don’t have a numeric pad, you could use, say, #, ' and], which are near the Enter key on the main keyboard

(well, they are on my keyboard!). But you can set up, at the beginning of the macro, your own choice of keys.

Sub AuthorForenamesInitialiser()

Reinsert author name, instead of dash in references list

This is where the author has used a dash (or some such punctuation as a ‘ditto’ marker) in a references list to indicate

“the same author as above”. The macro goes through and finds the first of these markers, looks at the paragraph above

to identify the author name and adds that in place of the marker, then looks for the next such marker.

It either works on a selection section or on the document as a whole.

The marker is set with the line:

repeatText = "^=,"

So in that case, it would be looking for an en dash followed by a comma.

As it stands, the macro looks for the second comma in the actual reference to define the name. This might not be what

you need. In that case let me know what your references list looks like, and I’ll work out the logic needed in the macro

to define the end of the ‘name’ of the reference.

So it would work for

 Beverley, P.E., “The book wot I wrote”, Archive Publications, Norwich 2020.

(which is the format of the references being edited by the requester of this macro) but I’d have to alter the macro if it

were:

 Beverley, P.E. (2020) “The book wot I wrote”, Archive Publications, Norwich.

I just altered it!

Sub AuthorNameReinsert()

Sub AuthorNameReinsertParens()

Check/change author/date formatting in references list
(Video: youtu.be/C1pIYOjKXXI)

(This macro won’t work if the surnames are all uppercase, so you’ll need to downcase them first – see the next

macro.)

Place the cursor in the first reference to be checked and run the macro. It will then check through that reference and

succeeding references, correcting the formatting of the author names and dates, as necessary, according to the

formatting options that you have set up beforehand.

http://wordmacrotools.com/macros/A/AuthorForenamesInitialiser
http://wordmacrotools.com/macros/A/AuthorNameReinsert
http://wordmacrotools.com/macros/A/AuthorNameReinsertParens
https://youtu.be/C1pIYOjKXXI

It deals with, for example, whether or not initials are spaced, and/or have a full point (period), whether initials are

before or after the surname, using ‘&’ ‘and’ or neither, and whether you have commas and/or full points (periods) here

there and wherever.

It was originally set up for Harvard type references, e.g.

Monaco, J.L. & Lawrence, W.T. (2003) Acute wound healing an overview. Clinics in Plastic Surgery 30, 1-12.

Review.

But it will now also cope with numbered references:

[62]. Monaco, J.L. & Lawrence, W.T. (2003) Acute wound healing an overview. Clinics in Plastic Surgery 30, 1-12.

Review.

And also references where the date is near the end:

65. Cheng A, Lakhiani C, Saint-Cyr M. Treatment of capsular contracture using complete implant coverage by

acellular dermal matrix: a novel technique. Plastic and reconstructive surgery. 2013;132(3):519-29.

In this case, it also allows you to add the date after the names:

65. Cheng A, Lakhiani C, Saint-Cyr M. (2013) Treatment of capsular...

These options are set up at the beginning of the macro, so you have to edit the options according to the options needed

for the job you are doing. (If you have to change options a lot, you can have two different sets of options by selecting

either optionSet = 1 or optionSet = 2 at the beginning of the macro.)

If the macro finds something that looks odd, or it doesn’t know how to format, it will stop and ask. You can decide

what to do with it.

The options at the beginning of the macro also include the possibility of getting the macro to generate a file showing

which (if any) of the name/date texts it has changed. You can then check to see if it’s done them correctly. If it’s the

macro that’s at fault, please tell me. Once you have gained confidence in the macro’s ability to do the job properly,

you might decide to switch the change list facility off.

It copes with things like “Brown, P. and Green, H. (Eds.) (2003)”, and if it sees, say, “Brown, P. and Green, H.,

Editors. (2003)” it will at first think that the “Editors” is another surname (but with no initials). However, if the

uninitialed ‘surname’, starts with “Ed”, then it will replace it with the optional edText or edsText (singular or

plural) as listed in the options lists in the macro.

I’m afraid that it can’t cope with multi-word surnames such as ‘von Trapp’ or ‘de la Mare’, so if it finds these it stops

and asks you whether to continue, highlight the reference or stop.

You can add to the list of words that might signify a multi-word surname:

avoidWords = "de la den der du ten van von"

This is case insensitive, so it will catch both ‘von Trapp’ and ‘Von Trapp’.

Also, there’s now an option to highlight any reference that has five or more authors. This was added because Wiley’s

content guidelines say that references with five or more authors, should be listed with only the first three authors’

names, and then ‘et al.’

And having highlighted them, you can then go through afterwards with the macro, EtAlElision (below), which will

delete the unwanted author names beyond a certain specified number.

One of the options at the beginning of the macro (in the sections marked as Case 1 and Case 2) you can specify

whether or not the ‘et al(.)’ is in italic or not. Currently it says:

etalItalic = True

Change to False if you want it in roman.

Sub AuthorDateFormatter()

Convert uppercase surnames to initial capital
(This and the following two macros seem to describe macros that do the same thing! Oh, it seems that this one aims to

be global, through the whole list, while the other two are selective. Your choice. ☺)

If the surnames in a references list are in all uppercase, then AuthorDateFormatter won’t work. This macro converts

the surnames to initial capital only. Short Chinese surnames such as Hu and Lo are a challenge (i.e. they appear as HU

and LO!), so the macro assumes that two-letter words are initials, and doesn’t change them.

However, if you also have Arabic names, starting Al and El, these too will be unchanged, so I’ve added a list at the

beginning of the macro:

LCnames = "AL,EL"

and these names will be changed to initial capital by the macro. Yes, AL and EL could be initials, so you might like to

have the option to change them or not. This is set by:

stopToCheck = True

Then you answer Yes or No, accordingly.

OK, I accept that ‘SMITH, ABC’ is going be turned into ‘Smith, Abc’, but you can’t have everything! Well, I could

probably program more into the macro, to check for the position of the comma, but there are so many alternative

formats for references lists that I’d really rather not, if you don’t mind; there are other things that could better occupy

my time. :-)

Sub AuthorInitialCapitalReferences()

Lowercase author surnames in references list
(Video: youtu.be/C1pIYOjKXXI)

This macro starts from the current cursor position and goes down through the text to the end of the file. It looks for,

e.g. “SMITH, J.” and converts it to “Smith, J.”

However, there may well be other words (e.g. acronyms) that need to stay in uppercase, so the macro offers you each

word in turn, and you can click ‘.’ and Enter to do the lowercasing, or just Enter to skip to the next uppercase item;

clicking ‘0’ (zero) and Enter stops the macro. This is useful in case you accidentally lowercase an acronym; then Ctrl-

Z is your friend!

. Enter – lowercase

Enter – skip to next all-caps word

0 Enter – stop the macro

The choice of zero and full point (period) is simply because these keys are near to the numeric keypad Enter key. If

you don’t have a numeric pad, you could use, say, # and], two keys that are near the Enter key on the main keyboard

(well, they are on my keyboard!). But you can set up, at the beginning of the macro, your own choice of keys.

http://wordmacrotools.com/macros/A/AuthorDateFormatter
http://wordmacrotools.com/macros/A/AuthorInitialCapitalReferences
https://youtu.be/C1pIYOjKXXI

Sub AuthorsNotAllCaps()

If you’re feeling brave, here’s a version that tries to be a bit more intelligent, but strips right through from the cursor.

to the end of the file. You might want to adjust the wildcard find it uses to locate what it thinks is an uppercase

surname.

Sub AuthorCaseChange()

Reduce the number of authors in a references list to three
(Video: youtu.be/C1pIYOjKXXI)

The idea is that you first use AuthorDateFormatter to check the reference list; it helpfully highlights all the references

that have more authors than the specified number.

You can then go to the first of these too-long references and run EtAlElision. It chops the reference down to just three

author names and adds the ‘et al’ (spelt and/or italic, as you wish).

It then looks down the rest of the list, and every time it finds a highlighted reference, it chops it down to size too.

However, if you have not used AuthorDateFormatter, you can use this macro on a one-reference-at-a-time basis.

Change the line at the beginning to:

doJustOne = True

Sub EtAlElision()

Reduce multi-author citation to ‘Bloggs et al.’
(Video: youtu.be/C1pIYOjKXXI)

This macro works on the citation, not the reference. It changes, say, “(Bloggs, Brown and Green, 2005)” to “(Bloggs

et al., 2005)”. Just click in ‘Bloggs’ and run the macro.

If your ‘et al’s have to be italic, change the first line of the macro to:

isItalic = True

N.B. When you try this macro, it may not work for the particular punctuation (or punctuations) that your author has

used, so let me know what the punctuation is, and I’ll fiddle it to suit your job.

Sub EtAlCitationElision()

Highlight all multi-author citations in text
(Video: youtu.be/C1pIYOjKXXI)

This is a companion to the above macro. It looks through the whole text for citations such as “(Bloggs, Brown and

Green, 2005)” and highlights them. Then as you read the text, they are brought to your attention, and you can use

EtAlCitationElision to change to ‘Bloggs et al.’.

N.B. Again, when you try this macro, it may not work for the particular punctuation (or punctuations) that your author

has used, so let me know what the punctuation is, and I’ll fiddle it to suit your job.

http://wordmacrotools.com/macros/A/AuthorsNotAllCaps
http://wordmacrotools.com/macros/A/AuthorCaseChange
https://youtu.be/C1pIYOjKXXI
http://wordmacrotools.com/macros/E/EtAlElision
https://youtu.be/C1pIYOjKXXI
http://wordmacrotools.com/macros/E/EtAlCitationElision
https://youtu.be/C1pIYOjKXXI

Sub HighlightMultiAuthorCitations()

Change author name order in references list
(Video: youtu.be/C1pIYOjKXXI)

(I’ve put two macros in here, neither of which is fully functional, but if this is something you would like to do, please

send me a sample references list, and I’ll get one or other of them working for you.)

If you have a references list (or a set of footnotes/endnotes) where the name is in the wrong order, the aim of these two

macros is to reverse, F. Bloggs or Fred Bloggs, to Bloggs, F. or Bloggs, Fred. And the other macro aims to do the

opposite switch of name order.

Sub AuthorNameSwap()

Sub SwapNames()

Later: a third macro that seems to work for Livingstone DN to D.N. Livingstone.

Sub SwapNamesFullPoints()

Later: a macro that seems to work for Livingstone D.N. to D.N. Livingstone.

Sub InitialPullBack()

Move date (year) to end of line in references list
(Video: youtu.be/C1pIYOjKXXI)

Yesterday someone said...

 My bibliography is currently in the format:

 Courtneidge, R., 1930. I Was an Actor Once. London: Hutchinson.

 and of course Chicago wants

 Courtneidge, R. I Was an Actor Once. London: Hutchinson, 1930.

 Is there a macro that will do this?"

With the macro I produced, you place the cursor somewhere in the first reference, run the macro, and it will work its

way down through the list, moving each date to the end of the reference, stopping only when either it gets to a

reference that doesn’t contain a date, or it gets to the end of the text.

As it stands, it puts parentheses round the date:

 Courtneidge, R. *I Was an Actor Once. *London: Hutchinson, (1930).

But if you don’t want parentheses then, at the beginning of the macro, instead of:

textBefore = ", ("

textAfter = ")"

http://wordmacrotools.com/macros/H/HighlightMultiAuthorCitations
https://youtu.be/C1pIYOjKXXI
http://wordmacrotools.com/macros/A/AuthorNameSwap
http://wordmacrotools.com/macros/S/SwapNames
http://wordmacrotools.com/macros/S/SwapNamesFullPoints
http://wordmacrotools.com/macros/I/InitialPullBack
https://youtu.be/C1pIYOjKXXI

you would put:

textBefore = ", "

textAfter = ""

And the other thing you can set at the beginning of the macro is:

' delete this many characters before the year
cutBefore = 2

' delete this many characters after the year

cutAfter = 1

The idea here is that you have to change ‘Courtneidge, R., 1930. I Was...’ into just ‘Courtneidge,

R. I Was...’, so as well as cutting out the date, you also have to delete two characters before the date (comma and

space), and one after (full point [period]).

Sub YearMoveToEnd()

Swap initials and surname
(Video: youtu.be/C1pIYOjKXXI)

Reverses the order of the initials and surname of an author (P.E. Beverley −> Beverley, P.E.). Place the cursor in the

name, but if the name is more than one word, select across from the first word to the last word: J. Van der Graff. The

macro will ‘round off’ the selection for you.

Then there’s one to go the other way (Beverley, P.E. −> P.E. Beverley). Again click in the surname, or roughly select

the words of a multi-word surname.

Sub InitialSwapper()

Sub InitialSwapperReverse()

Swap initials and surname, move date, etc.
(Video: youtu.be/V-EU9oxNlws)

This is a single macro that does several different things, according to where the macro is placed and whether any text

is selected.

1) Click in a surname, and it switches the name and initials from after to before the surname. If it’s “Smith, Joan C”,

click in “Smith” and the macro changes it to “Joan C Smith”.

N.B. The macro needs to have something to identify where the name ends – which full stops and commas don’t do. If

there’s a date (year) or if the title has an open quote, the macro will know to stop there, otherwise it beeps and admits

defeat.

2) Click in a date (year) and it moves it to the end and, if necessary, adds parentheses around the date.

The macro also helps if you need a city, state and publisher before the date (year), inside the parentheses, i.e. you’re

aiming for something like, “(Boston, Mass: Harvard Press, 1998)”.

http://wordmacrotools.com/macros/Y/YearMoveToEnd
https://youtu.be/C1pIYOjKXXI
http://wordmacrotools.com/macros/I/InitialSwapper
http://wordmacrotools.com/macros/I/InitialSwapperReverse

3) If the date is at the end in parentheses, with the publisher information in front of it, i.e. outside the parentheses, then

you need to move the open parenthesis; so select from somewhere in the year to somewhere in (as above) “Boston”,

and the macro will move the open parenthesis to before “Boston”.

4) Finally, if there’s no publisher info, and you want to paste in a placeholder, such as “City, State: Publisher, ” select

part of the word in front of which you want this text to be added, i.e. don’t include a space within the selection – that’s

how the macro knows you want to paste in some text. The actual text used is set in the first line of the macro.

Sub ReferenceNameDateMover()

Check alphabetic order of references list (well, any list)
(Video: youtu.be/Yx97w8XJ6iE)

Place the cursor in the first reference to be checked and run the macro. It will then check through the list until it finds a

pair of references that aren’t, apparently, in alphabetic order.

Sub AlphabeticOrderChecker()

An alternative approach is offered by this second macro. You select the list, run the macro, and it copies the list into a

new file, sorts it and uses Word’s own Compare function to compare the sorted and unsorted lists. What you are then

presented with is a track changed list showing what needs to be moved in order to correct the alphabetic order.

Sub AlphaOrderChecker()

And a third method you could try starts from the current cursor position and looks down through the list until it finds

something suspicious. Then it stops and you can check, maybe alter, and continue. It has an option to check the second

word in each reference, or just the first (surname) only. This is set by:

checkSecondWord = True

or False

Sub AlphabeticOrderByLine()

Check Vancouver reference citations
(Videos: youtu.be/GI7QdNXaGRI and youtu.be/2PG7n5MCMCo)

If you want to check that your Vancouver citations actually appear consecutively in the text (hoping and praying that

they do, so that you don’t have to renumber them!), you can run VancouverCitationChecker. It generates a list in a

separate file, so that you can check them:

[1]

[2, 3]

[4]

[4]

[4]

[4]

[4]

[5,6]

[4]

[4]

[5, 6]

[7-9]

[10], [11]

[7-9]

http://wordmacrotools.com/macros/R/ReferenceNameDateMover
https://youtu.be/Yx97w8XJ6iE
http://wordmacrotools.com/macros/A/AlphabeticOrderChecker
http://wordmacrotools.com/macros/A/AlphaOrderChecker
http://wordmacrotools.com/macros/A/AlphabeticOrderByLine
https://youtu.be/GI7QdNXaGRI
https://youtu.be/2PG7n5MCMCo

[4]

[6]

[12]

[13]

[14-16]

You can check the order in which the citations first appear, and you can check that their formatting is consistent (i.e.

not like the list I’ve quoted).

Sub VancouverCitationChecker()

But if you want to check whether any references are not (and again you hope not!) then this macro creates an ordered

list of all the numbered citation. So, for example, here’s a list created by the pervious macro:

[1]

[2]

[3, 4]

[5]

[6]

[4]

[3, 5, 7–11]

[3, 5]

[10]

[4]

[3]

[3]

[4]

[3, 4]

[4]

[11]

[4]

(and note the snazzy coloured spaces which the latest incarnation of VancouverCitationChecker now generates!). But

when you run this macro it generates:

001

002

003

003

003

003

003

003

004

004

004

004

004

004

004

005

005

005

006

007–011

010

011

http://wordmacrotools.com/macros/V/VancouverCitationChecker

You can now look down through the list and check that there aren’t any numbers missing from the sequence.

Sub VancouverAllCited()

Collate all reference lists into one big list and sort it
This macro assumes that you have a single file of all the text of a book, and that, at the end of each chapter, there’s a

references list. (This would be the case if you have used, say, MultiFileText to compile an AllText file.)

When you run the macro, it creates a copy of the whole text and tries to delete all the text that is not a set of references

in a list. It colours the text in different font colours to distinguish them from one another, and then it creates a copy of

the collated list and sorts it into alphabetic order. You can look through that list, looking for any anomalies because

similar (supposedly the same) references will be alphabetically together, so differences will hopefully be easier to

spot, manually.

Setting up: Look at the reference list and see what word(s) indicate the end of the list. These words are then set up in

the macro by the line:

stopWords = "Table ,Figure ,Figures ,[[[[,<CH>"

So if any of these words occurs, it will be seen as the end of a list. So the references lists might be followed by a list of

tables or figures, or the start of the next chapter. The ‘[[[[’ is what is used by MultiFileText to indicate the start of the

next chapter. The ‘<CH>’ is a chapter start tag (code).

Sub ReferencesCollator()

Type in today’s date
This very simple macro does something that can, probably, but done without using a macro – but I don’t know how,

and someone wanted to do it, so here it is!

Sub Yesterdate()

' Version 09.01.12

' Type yesterday's date into the text

Selection.TypeText Text:=Format(Date - 1, "d mmmm yyyy")

End Sub

Compare two sentences
(Video: https://youtu.be/EaFJuKTbhGw)

(This doesn’t only apply to whole sentences – indeed you could use it for paragraphs or more – but it’s easier to

explain in terms of two sentences.)

Suppose you have two sentences that are very similar (in the same file or in two different files). You want to know

which bits of it are different, so you select the first sentence and copy it (Ctrl-C), then you select the second sentence

and run the macro. It highlights the selected sentence and compares it word by word with the version in the clipboard

(i.e. the other sentence that you just copied) and it unhighlights any bits it can find that are identical. So what you end

up with is one or more highlighted bits, which it thinks are different.

Note though that there may be circumstances, especially in long sections of text, where it might not give an accurate

result, but as you use it, you’ll get the feeling of how it works.

http://wordmacrotools.com/macros/V/VancouverAllCited
http://wordmacrotools.com/macros/R/ReferencesCollator
http://wordmacrotools.com/macros/Y/Yesterdate
https://youtu.be/EaFJuKTbhGw

In particular, if one sentence has a section missing, it might not show up, so to double check, you can run the macro

again, but the opposite way round – i.e. copy the second sentence (i.e. the one that’s already been highlighted), then

select the first sentence and run the macro.

So you would get something like this:

The cat sat on the mat and smiled.

The cat sat on his mat and smiled.

You could apply the same technique to a single (long and complicated) word:

antidisestablishmentarianism

antidisestabilshmentarianism

Oh, bother! It doesn’t work for a single word! (The old version did.) Still, it’s much more useful for longer texts. Let

me try:

In particular, if one sentence has a section missing, it might not show up, so to double-check,

you can run the macro again, but the opposite way round – i.e. as a sort of alternative, copy the

second sentence (i.e. the one that’s already been highlighted), then select the first sentence and

run the macro.

In particular, if one sentence has a section mising, it might not show up, so to double check, you

can run the macro again, but the opposite way round – i.e. copy the second sentence (i.e. the one

that’s already been highlighted), then select the first sentence and run the macro.

Now if I try it the other way around:

In particular, if one sentence has a section missing, it might not show up, so to double-check,

you can run the macro again, but the opposite way round – i.e. as a sort of alternative, copy the

second sentence (i.e. the one that’s already been highlighted), then select the first sentence and

run the macro.

It’s not infallible, but I certainly find it much more helpful than the old version, which started at the beginning of the

sentence and at the end of the sentence and stopped highlighting when there was a difference between the two:

The cat sat on the mat and smiled.

The cat sat on his mat and smiled.

antidisestablishmentarianism

antidisestabilshmentarianism

But here are my paragraphs again:

In particular, if one sentence has a section missing, it might not show up, so to double-check,

you can run the macro again, but the opposite way round – i.e. as a sort of alternative, copy the

second sentence (i.e. the one that’s already been highlighted), then select the first sentence and

run the macro.

In particular, if one sentence has a section mising, it might not show up, so to double check, you

can run the macro again, but the opposite way round – i.e. copy the second sentence (i.e. the one

that’s already been highlighted), then select the first sentence and run the macro.

and the other way:

In particular, if one sentence has a section missing, it might not show up, so to double-check,

you can run the macro again, but the opposite way round – i.e. as a sort of alternative, copy the

second sentence (i.e. the one that’s already been highlighted), then select the first sentence and

run the macro.

Still, you can take your pick as I’ve renamed the old version and key it in the book.

Hint: The macro SelectSentence is a very useful complement to this macro, i.e. click somewhere in the first sentence,

and run SelectSentence; Ctrl-C; click somewhere in the second sentence, and run SelectSentence; then run

CompareTexts.

Sub CompareTexts()

Sub CompareTextsOLD()

Setting space before/after paragraph to specific values
If you have lots of manual spacing of paragraphs to do – altering the space before and/or space after paragraphs, you

can do it from the icons on the QAT, but if you want to use keystrokes instead, and if you want flexibility in terms of

the values used, here’s an idea. As it stands, each of these two macros reads the current value of the space, and

changes it to the next value in the list at the head of the macro. Currently, it’s set to:

myValues = "0,3,6,9,12,0"

So if the space is 0, it increases to 3, and the next time you run it (i.e. click the appropriate keystroke again), it goes to

6, then 9, then 12, then back to 0.

But if you set it to:

myValues = "6,9,6"

then regardless of the initial value of the space, it will switch to one or other of 6 or 9, and then alternate between

them.

So you can set it however you want it for your particular job.

N.B. This won’t do what you think:

myValues = "0,6,9,6,0"

i.e. it will not do 0−>6−>9−>6−>0; rather, it will do 0−>6−>9−>6−>9−>6. Can you see why? The macro only knows

what the value is now, so if it’s currently 6, it will always change it to 9.

And if you just want to use the macro to set the value to something specific, just use, for example:

myValues = "6"

(To apply this to a single paragraph, just put the cursor somewhere in the paragraph. Or you can apply it to multiple

paragraphs, though there’s no need to exactly select whole paragraphs.)

Sub SpaceBeforeSelector()

Sub SpaceAfterSelector()

http://wordmacrotools.com/macros/C/CompareTexts
http://wordmacrotools.com/macros/C/CompareTextsOLD
http://wordmacrotools.com/macros/S/SpaceBeforeSelector
http://wordmacrotools.com/macros/S/SpaceAfterSelector

Reading and setting indents
I had a huge job where the paragraphs had had their indents changed piecemeal – left indent, right indent and hanging

indent. And many of the changes were –“just a little bit this way or just a little bit that way”.

So I knocked up a couple of macros: one to read the numerical values of the three indents, and another to set them.

Obviously, for the IndentsSet macro, you’ll have to type in the indent values you want for the particular job, and you

might need two or three copies of the setting macro (each with different names, of course, e.g. IndentsSet1,

IndentsSet2, IndentsSet3), for different types of indentation.

Sub IndentsMeasure()

Sub IndentsSet()

Setting indents to specific values
Using a similar technique as for SpaceBeforeSelector, you can now set the first indent, hanging indent and right indent

to a selection of different values of your choice.

(Again, to apply this to a single paragraph, just put the cursor somewhere in the paragraph. Or you can apply it to

multiple paragraphs, though there’s no need to exactly select whole paragraphs.)

Sub IndentLeftSelector()

Sub IndentFirstSelector()

Sub IndentRightSelector()

Formatting current paragraph as displayed text
This macro removes quotes from the current paragraph and romanises and trims trailing spaces.

Sub DisplayedTextFormat()

Pulling lines of text into paragraphs
(Video: youtu.be/FTdyBWm4AzY)

I had a file of 149,000 words that came out of a PDF and that was in short lines each of which had a newline at the

end, i.e. they were paragraphs – 17,700 of them. Here’s an example of what I mean:

I had a file of 149,000 words that

came out of a PDF and that was in

short lines each of which had a

newline at the end, i.e. they were

paragraphs – 17,700 of them,

So, how was I to convert it to the original paragraphs? If the actual paragraphs, as opposed to the individual lines, had

had double newlines, it would have been easy; it would need just a three-line FRedit list:

^p^p|zczc

^p|^32

zczc|^p^p

1. Change double newlines to a silly marker text.

2. Change all the rest of the newlines into spaces.

http://wordmacrotools.com/macros/I/IndentsMeasure
http://wordmacrotools.com/macros/I/IndentsSet
http://wordmacrotools.com/macros/I/IndentLeftSelector
http://wordmacrotools.com/macros/I/IndentFirstSelector
http://wordmacrotools.com/macros/I/IndentRightSelector
http://wordmacrotools.com/macros/D/DisplayedTextFormat
https://youtu.be/FTdyBWm4AzY

3. Replace the silly marker text items with double newlines

Unfortunately, there were no blank lines between paragraphs – each had only a single newline. Problem!

I could, of course, look through the whole book, typing <Enter> after every paragraph, and then run the FRedit list

above. However, as I now know, the book has 1300 paragraphs – so that was going to take really rather a long time!

How could I reduce the time?

Idea:

~([.\?\!])^13|\1^p^p

^p^p|zczc

^p|^32

zczc|^p^p

That first line finds any line that ends with a full stop, a question mark or an exclamation mark (i.e. is the end of a

sentence) and adds a second newline.

There may well be some sentences, within the middle of a paragraph, whose full stop/question mark/exclamation mark

just happens to come at the end of a line, in which case the paragraph would be split at the end of that sentence, thus

shortening some of the paragraph. But I decided that as I read through the book, if any train of thought had obviously

been split, I’d be able to detect it.

But I then realised I had a more serious problem: that file contained quotes that were in short lines – a bit like poetry.

My global approach would turn each of these quotes into paragraphs!

Back to the drawing board!

What I did in the end was to use the global F&R:

~([.\?\!])^13|\1^p^p

to split lines at (hopefully) paragraph ends, and then I wrote a macro equivalent of:

^p^p|zczc

^p|^32

zczc|^p^p

that worked only on the selected text (called LinesToParagraphs). What I then had to do was to put the cursor in the

first line of a text-only paragraph (i.e. not a quote) and then scroll down through the text until I came to a quote. I then

used <shift-click> to select all that of that section of non-quote text and run the macro.

Then I clicked somewhere in the first line of non-quote text and scrolled down to the line before the next quote. Slow,

but a lot faster than any alternative I could think of.

Sub LinesToParagraphs()

Format numbers – at cursor or in a selection
Place the cursor in a number and run the macro and it will automatically format it. Or selection an area of text, e.g. a

whole table of numbers, and they will all be formatted.

But format in what sense? First, it deals with the commas needed , and then, if there’s a decimal part of the number it

rounds it to the number of digits required. This is specified in the two lines:

decimalFormat = "###,###,###,0.00"

nonDecimalFormat = "###,###,###,0"

http://wordmacrotools.com/macros/L/LinesToParagraphs

This is using a built-in function of Word for formatting numbers. However, is adds commas in four-digit numbers.

You can avoid this by using the option below. And also, I’ve added a function so that, instead of commas, it can use

either non-breaking spaces or thin spaces:

fourDigitComma = False

commaReplacement = ""

' commaReplacement = ChrW(8201) ' thin space

' commaReplacement = ChrW(160) ' non-breaking space

Just un-comment (remove the apostrophe) from the relevant line to implement this function.

Sub FormatNumbers()

Selectively delete Oxford commas
When you run this macro, it hunts for the next Oxford comma and asks if you want to delete it. If you just press

<Enter>, it deletes it and moves to the next one. If you type “.” and then press <Enter> it simply jumps to the next

Oxford comma.

It will stop at the end of the file, but if you want to drop out of the macro before you reach the end, simply type “0”

and then press <Enter>.

(I’m lying; actually, if you enter ANY character other than “.” it will drop out.)

At the beginning of the macro it has:
 myDelete = ""

 myJumpNext = "."

So if you want the macro to use different keys for any reason, you can change these two lines.

Sub OxfordCommaSelectiveDelete()

Switching the ruler display on and off
There might be some keystroke within word to do this but, if so, I can’t find it. So here’s a macro you can use and

therefore assign to a keystroke.

Sub RulersShow()

Add ‘However’ at start of a sentence
This macro adds ‘However’, followed by a comma, at the start of the sentence. It will also delete a lowercase

‘however’ if there is one later in the sentence.

You have to place the cursor after the first word of the sentence in which you want to insert ‘However’ at the

beginning. Then it doesn’t matter where the lowercase ‘however’ is, or even if there isn’t one there at all yet, the

macro inserts ‘However,’ at the beginning and lowercases the first letter of the following word.

If there was already a ‘however’ somewhere in the sentence, the macro will delete a comma that was following it (if

there was one), but it doesn’t delete a comma that precedes it. So you still have to deal with any remaining stray

commas in the sentence.

Sub However()

http://wordmacrotools.com/macros/F/FormatNumbers
http://wordmacrotools.com/macros/O/OxfordCommaSelectiveDelete
http://wordmacrotools.com/macros/R/RulersShow
http://wordmacrotools.com/macros/H/However

Set a current word(s) to small caps
This macro simply changes the selected text into small caps. For just a single word you don’t even have to select it;

you can just leave the cursor somewhere in the word and run the macro, and it will change the whole word to small

caps.

If you have, say, a title that has upper case first letter and you want to keep that as it is, while you change the rest of

the word to small caps, then just select that part of the word that needs small-casing, i.e. all but the initial capital.

Sub SmallCapWord()

Replicate the edit you just made
This macro replicates an edit you have just made throughout the entire document, i.e. makes it a global edit. It is set up

to change an ordinary space to a thin space, and a spaced hyphen to a spaced en rule. Being global, this is a macro to

be used with caution – be careful to select exactly what you want replicated, otherwise it could make changes that you

don’t want.

The good thing is that the macro highlights the changes it has made (set to yellow but could be changed), so you know

where to look to spot any errors.

To be more specific:

(a) it might be that you have an ordinary space between a digit and an abbreviated SI unit (e.g. 10 km), in several

places throughout the document, and you want to change all those instances to a thin space: you have to make

your edit in the first occurrence and then select the thin space with the following abbreviation. You then run

ReplicateThisEdit and it will make the same change throughout the document. Don’t just select the thin space,

or the macro will change every single space in the document to a thin space! So if you have different SI units

then you will have to edit one of each (6 mA, 9 N, 13 MPa, etc) and run the macro once for each.

(b) or you could use is if you have a lot of spaced hyphens and you want to change each one to a spaced en rule; if

so, you make the edit and highlight the en rule together with the space each side of it, then run

ReplicateThisEdit. (Don’t only select the en rule without the spaces, because all hyphens throughout the

document will be changed to en rules!

If you have other characters for which it would be useful to do global changes, and you are willing to ‘fiddle’ with the

macro, you could add one or more lines like these:

' thin spaces for spaces

If InStr(myReplace, ChrW(8201)) > 0 Then myFind = Replace(myReplace,

ChrW(8201), " ")

' en dashes for hyphen

If InStr(myReplace, ChrW(8211)) > 0 Then myFind = Replace(myReplace,

ChrW(8211), "-")

(You need to know the unicode numbers for the special symbols, such as en dash (= 8211), but the WhatChar macro

will tell you what it is.)

Sub ReplicateThisEdit()

Move selected text to start of sentence
This macro takes whatever text you have selected and moves it to the beginning of the sentence. It changes the case

appropriately of the new first letter and the old first letter of the sentence.

For this to work properly, you have to select the space preceding the first word you want to move, otherwise the macro

will uppercase the second letter of the new first word! You can select one or several words and the macro does as

described, so long as you remember to select the space preceding the word(s). However, if you just leave the cursor in

the middle of a word and run the macro, then it moves the word the cursor is in, together with the following word –

http://wordmacrotools.com/macros/S/SmallCapWord
http://wordmacrotools.com/macros/R/ReplicateThisEdit

both to the start of the sentence. If you put the cursor between two words and run the macro, it will move the two

words following the cursor to the start of the sentence.

Sub MoveToStart()

Moving list items (paragraphs) around speedily
The best way to make sense of these macros is to see them in action in a video, but how they work is explained below.

These four macros allow for speedy manipulation of short paragraphs, e.g. list items or references, but I suppose they

could be used for larger paragraphs.

ShiftUp and ShiftDown move the item where the cursor is placed up or down one place.

ShiftOut cuts the current item from the working document and pastes it into a temporary file that is open on the

computer; the file’s name must contain the word “list”, e.g. MyTempList. If you roughly select a number of items

(i.e. click in the first item and Shift-click in the final item) it cuts those items and pastes them into the temporary file.

ShiftIn goes to the temporary file and cuts the current item and pastes it in the working file below the item where the

cursor is placed in the working file.

If the items need splitting out between two (or more!) working files, simply click in the file to which the current item

in the temporary file needs to go and run the macro: a very quick process.

Sub ShiftUp()

Sub ShiftDown()

Sub ShiftOut()

Sub ShiftIn()

http://wordmacrotools.com/macros/M/MoveToStart
http://wordmacrotools.com/macros/S/ShiftUp
http://wordmacrotools.com/macros/S/ShiftDown
http://wordmacrotools.com/macros/S/ShiftOut
http://wordmacrotools.com/macros/S/ShiftIn

